5 results on '"Giuseppe Antonio Elia"'
Search Results
2. Ru-Doping of P2-NaxMn0.75Ni0.25O2-Layered Oxides for High-Energy Na-Ion Battery Cathodes: First-Principles Insights on Activation and Control of Reversible Oxide Redox Chemistry
- Author
-
Arianna Massaro, Aniello Langella, Claudio Gerbaldi, Giuseppe Antonio Elia, Ana B. Muñoz-García, Michele Pavone, Massaro, A., Langella, A., Gerbaldi, C., Elia, G. A., Munoz-Garcia, A. B., and Pavone, M.
- Subjects
Materials Chemistry ,Electrochemistry ,Energy Engineering and Power Technology ,Chemical Engineering (miscellaneous) ,Electrical and Electronic Engineering - Published
- 2022
3. Cathode-Electrolyte Interphase in a LiTFSI/Tetraglyme Electrolyte Promoting the Cyclability of V$_{2}$O$_{5}$
- Author
-
Stefano Passerini, Xu Liu, Maider Zarrabeitia, Bingsheng Qin, and Giuseppe Antonio Elia
- Subjects
highly concentrated electrolytes ,Technology ,Materials science ,Scanning electron microscope ,020209 energy ,02 engineering and technology ,Electrolyte ,Electrochemistry ,cathode-electrolyte interphase ,law.invention ,lithium batteries ,tetraglyme ,vanadium oxides ,X-ray photoelectron spectroscopy ,law ,0202 electrical engineering, electronic engineering, information engineering ,General Materials Science ,Spectroscopy ,021001 nanoscience & nanotechnology ,Cathode ,Dielectric spectroscopy ,Chemical engineering ,Electrode ,0210 nano-technology ,ddc:600 - Abstract
V2O5, one of the earliest intercalation-type cathode materials investigated as a Li+ host, is characterized by an extremely high theoretical capacity (441 mAh g-1). However, the fast capacity fading upon cycling in conventional carbonate-based electrolytes is an unresolved issue. Herein, we show that using a LiTFSI/tetraglyme (1:1 in mole ratio) electrolyte yields a highly enhanced cycling ability of V2O5 (from 20% capacity retention to 80% after 100 cycles at 50 mA g-1 within 1.5-4.0 V vs Li+/Li). The improved performance mostly originates from the V2O5 electrode itself, since refreshing the electrolyte and the lithium electrode of the cycled cells does not help in restoring the V2O5 electrode capacity. Electrochemical impedance spectroscopy (EIS), post-mortem scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS) have been employed to investigate the origin of the improved electrochemical behavior. The results demonstrate that the enhanced cyclability is a consequence of a thinner but more stable cathode-electrolyte interphase (CEI) layer formed in LiTFSI/tetraglyme with respect to the one occurring in 1 M LiPF6 in EC/DMC (1:1 in weight ratio, LP30). These results show that the cyclability of V2O5 can be effectively improved by simple electrolyte engineering. At the same time, the uncovered mechanism further reveals the vital role of the CEI on the cyclability of V2O5, which can be helpful for the performance optimization of vanadium-oxide-based batteries.
- Published
- 2020
4. High-power na-ion and k-ion hybrid capacitors exploiting cointercalation in graphite negative electrodes
- Author
-
Alberto Varzi, Huang Zhang, Bingsheng Qin, Giuseppe Antonio Elia, Peter Ruschhaupt, Xu Liu, Shan Fang, and Stefano Passerini
- Subjects
Materials science ,Renewable Energy, Sustainability and the Environment ,business.industry ,Energy Engineering and Power Technology ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Ion ,Anode ,law.invention ,Power (physics) ,Capacitor ,Fuel Technology ,Chemistry (miscellaneous) ,law ,Electrode ,Ionic diffusion ,Materials Chemistry ,Optoelectronics ,Graphite ,0210 nano-technology ,business ,Nanoscopic scale - Abstract
Enhanced solid-state ionic diffusion for high-power Na-ion and K-ion hybrid capacitors (SIHCs and PIHCs) is usually attained via tailoring anode materials to the nanoscale, which inevitably require...
- Published
- 2019
5. Interphase Evolution of a Lithium-Ion/Oxygen Battery
- Author
-
Yang-Kook Sun, Jakub Reiter, Giuseppe Antonio Elia, Jusef Hassoun, Dominic Bresser, Bruno Scrosati, Philipp Oberhumer, Stefano Passerini, Dipartimento di Chimica, Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Polymères Conducteurs Ioniques (PCI), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Karlsruhe Institute of Technology (KIT), Helmhotlz Institute of Ulm (HIU), BMW, Hanyang University, Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
safety ,Li/O2 ,Materials science ,ionic liquid electrolyte ,Performance ,Cells ,Socio-culturale ,chemistry.chemical_element ,Nanotechnology ,Air Batteries ,Electrolyte ,lithium-ion battery ,Electrochemistry ,7. Clean energy ,Oxygen ,Lithium-ion battery ,law.invention ,Li/O ,Economica ,law ,Li-O-2 Batteries ,General Materials Science ,Polymer Electrolyte ,Polarization (electrochemistry) ,Ion Oxygen Battery ,[PHYS]Physics [physics] ,Bis(Trifluoromethanesulfonyl)Imide ,Ambientale ,Cathode ,Anode ,Dielectric spectroscopy ,high efficiency ,Liquid-Based Electrolytes ,Chemical engineering ,chemistry ,Materials Science (all) ,2 ,Stability - Abstract
International audience; A novel lithium-ion/oxygen battery employing Pyr(14)FSI-LiTESI as the electrolyte and nanostructured LixSn-C as the anode is reported. The remarkable energy content of the oxygen cathode, the replacement of the lithium metal anode by a nanostructured stable lithium-alloying composite, and the concomitant use of nonflammable ionic liquid-based electrolyte result in a new and intrinsically safer energy storage system. The lithium-ion/oxygen battery delivers a stable capacity of 500 mAh g(-1) at a working voltage of 2.4 V with a low charge-discharge polarization. However, further characterization of this new system by electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy reveals the progressive decrease of the battery working voltage, because of the crossover of oxygen through the electrolyte and its direct reaction with the LixSn-C anode.
- Published
- 2015
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.