1. Mechanistic Insight into the Light-Triggered CuAAC Reaction: Does Any of the Photocatalyst Go?
- Author
-
Universitat Politècnica de València. Departamento de Química - Departament de Química, Ford Motor Company, GENERALITAT VALENCIANA, AGENCIA ESTATAL DE INVESTIGACION, Universidad Nacional de Córdoba, Argentina, Ministerio de Ciencia, Innovación y Universidades, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina, Martínez-Haya, Rebeca, Heredia, Adrian A., Castro-Godoy, Willber D., Schmidt, Luciana C., Marín García, Mª Luisa, Argüello, Juan E., Universitat Politècnica de València. Departamento de Química - Departament de Química, Ford Motor Company, GENERALITAT VALENCIANA, AGENCIA ESTATAL DE INVESTIGACION, Universidad Nacional de Córdoba, Argentina, Ministerio de Ciencia, Innovación y Universidades, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina, Martínez-Haya, Rebeca, Heredia, Adrian A., Castro-Godoy, Willber D., Schmidt, Luciana C., Marín García, Mª Luisa, and Argüello, Juan E.
- Abstract
[EN] The attainment of transition-metal catalysis and photoredox catalysis has represented a great challenge over the last years. Herein, we have been able to merge both catalytic processes into what we have called "the light-triggered CuAAC reaction". Particularly, the CuAAC reaction reveals opposite outcomes depending on the nature of the photocatalyst (eosin Y disodium salt and riboflavin tetraacetate) and additives (DABCO, Et3N, and NaN3) employed. To get a better insight into the operating processes, steady-state, time-resolved emission, and laser flash photolysis experiments have been performed to determine reactivity and kinetic data. These results, in agreement with thermodynamic estimations based on reported data, support the proposed mechanisms. While for eosin Y (EY), Cu(II) was reduced by its triplet excited state; for riboflavin tetraacetate (RFTA), mainly triplet excited RFTA state photoreductions by electron donors as additives are mandatory, affording RFTA¿- (from DABCO and NaN3) or RFTAH¿ (from Et3N). Subsequently, these species are responsible for the reduction of Cu(II). For both photocatalysts, photogenerated Cu(I) finally renders 1,2,3-triazole as the final product. The determined kinetic rate constants allowed postulating plausible mechanisms in both cases, bringing to light the importance of kinetic studies to achieve a strong understanding of photoredox processes.
- Published
- 2021