1. Development of novel dual binders as potent, selective, and orally bioavailable tankyrase inhibitors.
- Author
-
Hua Z, Bregman H, Buchanan JL, Chakka N, Guzman-Perez A, Gunaydin H, Huang X, Gu Y, Berry V, Liu J, Teffera Y, Huang L, Egge B, Emkey R, Mullady EL, Schneider S, Andrews PS, Acquaviva L, Dovey J, Mishra A, Newcomb J, Saffran D, Serafino R, Strathdee CA, Turci SM, Stanton M, Wilson C, and Dimauro EF
- Subjects
- Administration, Oral, Biological Availability, Dose-Response Relationship, Drug, Enzyme Inhibitors administration & dosage, Enzyme Inhibitors chemistry, Humans, Models, Molecular, Molecular Structure, Structure-Activity Relationship, Tankyrases metabolism, Drug Discovery, Enzyme Inhibitors pharmacology, Tankyrases antagonists & inhibitors
- Abstract
Tankyrases (TNKS1 and TNKS2) are proteins in the poly ADP-ribose polymerase (PARP) family. They have been shown to directly bind to axin proteins, which negatively regulate the Wnt pathway by promoting β-catenin degradation. Inhibition of tankyrases may offer a novel approach to the treatment of APC-mutant colorectal cancer. Hit compound 8 was identified as an inhibitor of tankyrases through a combination of substructure searching of the Amgen compound collection based on a minimal binding pharmacophore hypothesis and high-throughput screening. Herein we report the structure- and property-based optimization of compound 8 leading to the identification of more potent and selective tankyrase inhibitors 22 and 49 with improved pharmacokinetic properties in rodents, which are well suited as tool compounds for further in vivo validation studies.
- Published
- 2013
- Full Text
- View/download PDF