1. Environmentally Friendly Manufacturing of Flexible Graphite Electrodes for a Wearable Device Monitoring Zinc in Sweat.
- Author
-
Dias AA, Chagas CLS, Silva-Neto HA, Lobo-Junior EO, Sgobbi LF, de Araujo WR, Paixão TRLC, and Coltro WKT
- Subjects
- Dielectric Spectroscopy, Electrodes, Humans, Limit of Detection, Electrochemical Techniques, Graphite chemistry, Sweat metabolism, Wearable Electronic Devices, Zinc analysis, Zinc metabolism
- Abstract
Electrochemical sensors based on graphite and polymers have emerged as powerful analytical tools for bioanalytical applications. However, most of the fabrication processes are not environmentally friendly because they often involve the use of toxic reagents and generate waste. This study describes an alternative method to produce flexible electrodes in plastic substrates using graphite powder and thermal laminating sheets by solid-solid deposition through hot compression, without the use of hazardous chemical reagents. The electrodes developed through the proposed approach have successfully demonstrated flexibility, robustness, reproducibility (relative standard deviation around 6%), and versatility. The electrodes were thoroughly characterized by cyclic voltammetry, electrochemical impedance spectroscopy, Raman spectroscopy, and scanning electron microscopy. As a proof of concept, the electrode surfaces were modified with bismuth and used for zinc analysis in sweat. The modified electrodes presented linearity ( R
2 = 0.996) for a wide zinc concentration range (50-2000 ppb) and low detection limit (4.31 ppb). The proposed electrodes were tested using real sweat samples and the achieved zinc concentrations did not differ statistically from the data obtained by atomic absorption spectroscopy. To allow wearable applications, a 3D-printed device was fabricated, integrated with the proposed electrochemical system, and fixed at the abdomen by using an elastic tape to collect, store, and analyze the sweat sample. The matrix effect test was performed, spiking the real sample with different zinc levels, and the recovery values varied between 85 and 106%, thus demonstrating adequate accuracy and robustness of the flexible electrodes developed based on the proposed fabrication method.- Published
- 2019
- Full Text
- View/download PDF