11 results on '"Clary, DC"'
Search Results
2. New Developments in Semiclassical Transition-State Theory.
- Author
-
Shan X, Burd TAH, and Clary DC
- Abstract
This Feature Article describes some recent developments and applications of the Semiclassical Transition-State Theory (SCTST) for treating quantum tunneling in chemical reactions. A reduced dimensional form of the SCTST is discussed and is shown to be particularly efficient, as the required number of electronic structure calculations is reduced to an absolute minimum. We also describe how an alternative formulation of SCTST developed by Hernandez and Miller [ Chem. Phys. Lett. 1993 , 214 , 129 ], the SCTST-θ, has advantages in allowing for straightforward applications of the SCTST for any form of the potential expansion at the transition state. We also illustrate the power of SCTST in applications to more complex systems. We show how polyatomic modes such as internal rotations and torsions can be treated efficiently in SCTST calculations. We also describe some applications of the method to hydrogen atom tunneling in unimolecular reactions including the degradation of chemical nerve agents and the decay of the atmospherically important Criegee intermediates.
- Published
- 2019
- Full Text
- View/download PDF
3. Theoretical Study of Gas-Phase Unimolecular Decomposition of Simulants of the Nerve Agent VX.
- Author
-
Shan X, Sambrook MR, and Clary DC
- Abstract
In order to further understand and support approaches for the degradation and destruction of toxic chemicals, the thermal decomposition of the nerve agent VX through possible pericyclic hydrogen transfer reactions is investigated using simulant molecules. A total of four simulant molecules are studied. Three of them have only one possible H-transfer site, while the other has two. They are chosen to bring physical insights into individual steps of the pericyclic reaction mechanism as well as the possible existence of competing mechanisms. The unimolecular reaction rate constants at the high-pressure limit are calculated. Geometries of stationary structures on the potential energy surfaces are calculated with the MP2 method as well as the B3LYP and M06-2X functionals and 6-311++G(d,p), jul-cc-pVTZ, and aug-cc-pVTZ basis sets. The barrier heights are corrected using energy values obtained at the CBS/QB3 level of theory. The contribution of the quantum tunneling effect to the reaction rate constants is included using one-dimensional semiclassical transition state theory. Adiabatic barrier heights, reaction rate constants, and branching ratio of the competing mechanisms are reported.
- Published
- 2019
- Full Text
- View/download PDF
4. A Combined Theoretical and Experimental Study of Sarin (GB) Decomposition at High Temperatures.
- Author
-
Shan X, Vincent JC, Kirkpatrick S, Walker MD, Sambrook MR, and Clary DC
- Abstract
Theoretical and experimental results are presented for the pyrolytic decomposition of the nerve agent sarin (GB) in the gas phase. High-level quantum chemistry calculations are performed together with a semiclassical transition-state theory for describing quantum mechanical tunneling. The experimental and theoretical results for the temperature dependence of the survival times show very good agreement, as does the calculated and measured activation energy for thermal decomposition. The combined results suggest that the thermal decomposition of GB, for temperature ranging from 350 to 500 °C, goes through a pericyclic reaction mechanism with a transition state consisting of a six-membered ring structure.
- Published
- 2017
- Full Text
- View/download PDF
5. Reduced-Dimensionality Semiclassical Transition State Theory: Application to Hydrogen Atom Abstraction and Exchange Reactions of Hydrocarbons.
- Author
-
Greene SM, Shan X, and Clary DC
- Abstract
Quantum mechanical methods for calculating rate constants are often intractable for reactions involving many atoms. Semiclassical transition state theory (SCTST) offers computational advantages over these methods but nonetheless scales exponentially with the number of degrees of freedom (DOFs) of the system. Here we present a method with more favorable scaling, reduced-dimensionality SCTST (RD SCTST), that treats only a subset of DOFs of the system explicitly. We apply it to three H abstraction and exchange reactions for which two-dimensional potential energy surfaces (PESs) have previously been constructed and evaluated using RD quantum scattering calculations. We differentiated these PESs to calculate harmonic frequencies and anharmonic constants, which were then used to calculate cumulative reaction probabilities and rate constants by RD SCTST. This method yielded rate constants in good agreement with quantum scattering results. Notably, it performed well for a heavy-light-heavy reaction, even though it does not explicitly account for corner-cutting effects. Recent extensions to SCTST that improve its treatment of deep tunneling were also evaluated within the reduced-dimensionality framework. The success of RD SCTST in this study suggests its potential applicability to larger systems.
- Published
- 2015
- Full Text
- View/download PDF
6. Quantum dynamics of the abstraction reaction of H with cyclopropane.
- Author
-
Shan X and Clary DC
- Abstract
The dynamics of the abstraction reaction of H atoms with the cyclopropane molecule is studied using quantum mechanical scattering theory. The quantum scattering calculations are performed in hyperspherical coordinates with a two-dimensional (2D) potential energy surface. The ab initio energy calculations are carried out with CCSD(T)-F12a/cc-pVTZ-F12 level of theory with the geometry and frequency calculations at the MP2/cc-pVTZ level. The contribution to the potential energy surface from the spectator modes is included as the projected zero-point energy correction to the ab initio energy. The 2D surface is fitted with a 29-parameter double Morse potential. An R-matrix propagation scheme is carried out to solve the close-coupled equations. The adiabatic energy barrier and reaction enthalpy are compared with high level computational calculations as well as experimental data. The calculated reaction rate constants shows very good agreement when compared with the experimental data, especially at lower temperature highlighting the importance of quantum tunnelling. The reaction probabilities are also presented and discussed. The special features of performing quantum dynamics calculation on the chemical reaction of a cyclic molecule are discussed.
- Published
- 2014
- Full Text
- View/download PDF
7. Reduced dimensionality quantum dynamics of CH3 + CH4 --> CH4 + CH3: symmetric hydrogen exchange on an Ab initio potential.
- Author
-
Remmert SM, Banks ST, and Clary DC
- Abstract
The symmetric title reaction CH(3) + CH(4) --> CH(4) + CH(3) is studied using quantum scattering theory. Quantum dynamics calculations are performed in hyperspherical coordinates with a two-dimensional effective potential energy surface consisting of an analytical 18-parameter double Morse function fit to ab initio data at the CCSD(T)/cc-pVTZ//MP2/cc-pVTZ level of theory. Spectator modes are treated adiabatically by inclusion of projected zero-point energy corrections in the effective potential. The close-coupled equations are solved via R-matrix propagation. Energy and J-shifted thermal rate constants are compared to experimental data and highlight the importance of quantum tunneling. Oscillating reactivity and metastable bound state resonances are observed in the cumulative and state-to-state reaction probabilities. State-to-state differential and initial state-selected integral cross sections are presented and discussed. Primary and secondary kinetic isotope effects for two symmetric deuterated variants of the title reaction are also presented.
- Published
- 2009
- Full Text
- View/download PDF
8. Predicting catalysis: understanding ammonia synthesis from first-principles calculations.
- Author
-
Hellman A, Baerends EJ, Biczysko M, Bligaard T, Christensen CH, Clary DC, Dahl S, van Harrevelt R, Honkala K, Jonsson H, Kroes GJ, Luppi M, Manthe U, Nørskov JK, Olsen RA, Rossmeisl J, Skúlason E, Tautermann CS, Varandas AJ, and Vincent JK
- Abstract
Here, we give a full account of a large collaborative effort toward an atomic-scale understanding of modern industrial ammonia production over ruthenium catalysts. We show that overall rates of ammonia production can be determined by applying various levels of theory (including transition state theory with or without tunneling corrections, and quantum dynamics) to a range of relevant elementary reaction steps, such as N(2) dissociation, H(2) dissociation, and hydrogenation of the intermediate reactants. A complete kinetic model based on the most relevant elementary steps can be established for any given point along an industrial reactor, and the kinetic results can be integrated over the catalyst bed to determine the industrial reactor yield. We find that, given the present uncertainties, the rate of ammonia production is well-determined directly from our atomic-scale calculations. Furthermore, our studies provide new insight into several related fields, for instance, gas-phase and electrochemical ammonia synthesis. The success of predicting the outcome of a catalytic reaction from first-principles calculations supports our point of view that, in the future, theory will be a fully integrated tool in the search for the next generation of catalysts.
- Published
- 2006
- Full Text
- View/download PDF
9. Torsional anharmonicity in the conformational analysis of beta-D-galactose.
- Author
-
Sturdy YK, Skylaris CK, and Clary DC
- Subjects
- Gases, Glucose-6-Phosphate analogs & derivatives, Glucose-6-Phosphate chemistry, Molecular Conformation, Quantum Theory, Stereoisomerism, Surface Properties, Temperature, Galactose chemistry, Mathematical Computing, Monte Carlo Method
- Abstract
Schemes to include a treatment of torsional anharmonicity in the conformational analysis of biological molecules are introduced. The approaches combine ab initio electronic energies and harmonic frequencies with anharmonic torsional partition functions calculated using the torsional path integral Monte Carlo method on affordable potential energy surfaces. The schemes are applied to the conformational study of the monosaccharide beta-d-galactose in the gas phase. The global minimum structure is almost exclusively populated at 100 K, but a large number of conformers are present at ambient and higher temperatures. Both quantum mechanical and anharmonic effects in the torsional modes have little effect on the populations at all temperatures considered, and it is, therefore, expected that standard harmonic treatments are satisfactory for the conformational study of monosaccharides.
- Published
- 2006
- Full Text
- View/download PDF
10. Quantum simulation of a hydrated noradrenaline analog with the torsional path integral method.
- Author
-
Miller TF 3rd and Clary DC
- Subjects
- Molecular Conformation, Monte Carlo Method, Quantum Theory, Temperature, Models, Molecular, Norepinephrine chemistry, Water chemistry
- Abstract
An extended version of the torsional path integral Monte Carlo (TPIMC) method is presented and shown to be useful for studying the conformation of flexible molecules in solvated clusters. The new technique is applied to the hydrated clusters of the 2-amino-1-phenyl-ethanol (APE) molecule. APE + nH2O clusters with n = 0-4 are studied at 100 and 300 K using both classical and quantum simulations. Only at the lower temperature is the hydration number n found to impact the conformational distribution of the APE molecule. This is shown to be a result of the temperature-dependent balance between the internal energy and entropy contributions to the relative conformer free energies. Furthermore, at 100 K, large quantum effects are observed in the calculated conformer populations. A particularly large quantum shift of 30% of the total population is calculated for the APE + 2H2O cluster, which is explained in terms of the relative zero point energy of the lowest-energy hydrated structures for this cluster. Finally, qualitative agreement is found between the reported calculations and recent spectroscopy experiments on the hydrated clusters of APE, including an entropically driven preference for the formation of AG-type hydrated structures and the formation of a water "droplet" in the APE + 4H2O cluster.
- Published
- 2006
- Full Text
- View/download PDF
11. H-densities: a new concept for hydrated molecules.
- Author
-
Clary DC, Benoit DM, and van Mourik T
- Subjects
- Benzene chemistry, Cytosine chemistry, DNA chemistry, Methanol chemistry, Phenol chemistry, Hydrogen chemistry, Models, Chemical, Water chemistry
- Abstract
It is common to represent molecules by "ball-and-stick" models that represent static positions of atoms. However, the vibrational states of water molecules involved in hydrogen bonding have wide amplitudes, even in their ground states. Here we introduce a new representation of this wide-amplitude vibrational motion: H-density plots. These plots represent the delocalized zero-point vibrational motion of terminal hydrogen atoms of water molecules weakly bound to other molecules. They are a vibrational analogy to electron densities. Calculations of the H-densities for complexes of water with water, benzene, phenol, and DNA bases are presented. These are obtained using the quantum diffusion Monte Carlo method. Comparisons of measured and calculated rotational constants provide experimental evidence of the new concept.
- Published
- 2000
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.