1. Natural Products Targeting the Fungal Unfolded Protein Response as an Alternative Crop Protection Strategy.
- Author
-
Charpentier T, Viault G, Le Ray AM, Bataillé-Simoneau N, Helesbeux JJ, Blon N, Bastide F, Marchi M, Aligon S, Bruguière A, Dinh CP, Benbelkacem Z, Dallery JF, Simoneau P, Richomme P, and Guillemette T
- Subjects
- Crop Protection, Molecular Docking Simulation, Binding Sites, Fungal Proteins genetics, Protein Serine-Threonine Kinases, Biological Products, Fungicides, Industrial pharmacology
- Abstract
Discovering new solutions for crop protection is a major challenge for the next decades as a result of the ecotoxicological impact of classical fungicides, the emergence of fungicide resistances, and the consequence of climate change on pathogen distribution. Previous work on fungal mutants deficient in the unfolded protein response (UPR) supported that targeting this pathway is a promising plant disease control strategy. In particular, we showed that the UPR is involved in fungal virulence by altering cell protection against host defense compounds, such as phytoalexins and phytoanticipins. In this study, we evaluated natural products targeting fungal IRE1 protein (UPR effector) and consequently increasing fungal susceptibility to plant defenses. Developing an in vitro cell-based screening assay allowed for the identification of seven potential IRE1 inhibitors with a focus on polyhydroxylated prenylated xanthones. Inhibition of hac 1 mRNA splicing, which is mediated by IRE1, was then validated for the most active compound, namely, γ-mangostin 3 . To study the mode of interaction between the binding site of IRE1 and active xanthones, molecular docking was also undertaken, revealing similar and novel interactions between the known inhibitor and the binding site. Eventually, active xanthones applied at subtoxic doses induced a significant reduction in necrosis size for leaves of Brassica oleracea inoculated with Alternaria brassicicola and Botrytis cinerea .
- Published
- 2023
- Full Text
- View/download PDF