7 results on '"Asimakopoulos, Alexandros G."'
Search Results
2. Migration of Parabens, Bisphenols, Benzophenone-Type UV Filters, Triclosan, and Triclocarban from Teethers and Its Implications for Infant Exposure.
- Author
-
Asimakopoulos, Alexandros G., Elangovan, Madhavan, and Kannan, Kurunthachalam
- Subjects
- *
PARABENS , *BISPHENOLS , *BENZOPHENONES , *TRICLOSAN , *INFANT physiology , *CONSUMER goods - Abstract
Parabens (p-hydroxybenzoic acid esters), bisphenols, benzophenone-type UV filters, triclosan, and triclocarban are used in a variety of consumer products, including baby teethers. Nevertheless, the exposure of infants to these chemicals through the use of teethers is still unknown. In this study, 59 teethers, encompassing three types, namely solid plastic, gel-filled, and water-filled (most labeled "bisphenol A-free"), were collected from the U.S. market and analyzed for 26 potential endocrine-disrupting chemicals (EDCs) from intact surfaces through migration/leaching tests performed with Milli-Q water and methanol. The total amount of the sum of six parent parabens (Σ6 Parabens) leached from teethers ranged from 2.0 to 1990 ng, whereas that of their four transformation products (Σ4 Parabens) ranged from 0.47 to 839 ng. The total amount of the sum of nine bisphenols (Σ9 bisphenols) and 5 benzophenones (Σ5 benzophenones) leached from teethers ranged from 1.93 to 213 ng and 0.59 to 297 ng, respectively. Triclosan and triclocarban were found in the extracts of teethers at approximately 10-fold less amounts than were bisphenols and benzophenones. Based on the amount leached into Milli-Q water, daily intake of these chemicals was estimated from the use of teethers by infants at 12 months of age. This is the first study to document the occurrence and migration of a wide range EDCs from intact surfaces of baby teethers. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
3. Synthetic Phenolic Antioxidants and Their Metabolites in Indoor Dust from Homes and Microenvironments.
- Author
-
Wei Wang, Asimakopoulos, Alexandros G., Abualnaja, Khalid O., Covaci, Adrian, Gevao, Bondi, Johnson-Restrepo, Boris, Kumosani, Taha A., Malarvannan, Govindan, Minh, Tu Binh, Hyo-Bang Moon, Haruhiko Nakata, Haruhiko, Sinha, Ravindra K., and Kannan, Kurunthachalam
- Subjects
- *
ANTIOXIDANTS , *PHENOLS , *METABOLITES , *METABOLOMICS , *CHEMICAL ecology - Abstract
Synthetic phenolic antioxidants (SPAs), including 2,6-di-tert-butyl-4-hydroxytoluene (BHT), are extensively used in food, cosmetic and plastic industries. Nevertheless, limited information is available on human exposures, other than the dietary sources, to SPAs. In this study, occurrence of 9 SPAs and their metabolites/degradation products was determined in 339 indoor dust collected from 12 countries. BHT was found in 99.5% of indoor dust samples from homes and microenvironments at concentrations that ranged from < LOQ to 118 μg/g and 0.10 to 3460 μg/g, respectively. This is the first study to measure BHT metabolites in house dust (0.01-35.1 μg/g) and their concentrations accounted for 9.2-58% of the sum concentrations (ΣSPAs). 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHT-CHO), 2,6-di-tert-butyl-4-(hydroxymethyl)phenol (BHT-OH), 2,6-di-tert-butyl-1,4-benzoquinone (BHT-Q) were the major derivatives of BHT found in dust samples. The concentrations of gallic acid esters (gallates) in dust from homes and microenvironments ranged from < LOQ to 18.2 and < LOQ to 684 μg/g, respectively. The concentrations and profiles of SPAs varied among countries and microenvironments. Significantly elevated concentrations of SPAs were found in dust from an e-waste workshop (1530 μg/g). The estimated daily intake (EDI) of BHT via house dust ingestion ranged from 0.40 to 222 ng/kg/d (95th percentile). [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
4. Mass Loading and Fate of Linear and Cyclic Siloxanes in a Wastewater Treatment Plant in Greece.
- Author
-
Bletsou, Anna A., Asimakopoulos, Alexandros G., Stasinakis, Athanasios S., Thomaidis, Nikolaos S., and Kannan, Kurunthachalam
- Subjects
- *
WASTEWATER treatment , *SILOXANES , *CYCLIC compounds , *SOLID-liquid equilibrium , *SEWAGE disposal plants & the environment , *EFFICIENCY of sewage disposal plants , *ORGANIC compounds removal (Sewage purification) , *ORGANOSILICON compounds - Abstract
The occurrence and fate of 5 cyclic (D3 to D7) and 12 linear (L3 to L14) siloxanes were investigated in raw and treated wastewater (both particulate and dissolved phases) as well as in sludge from a wastewater treatment plant (WWTP) in Athens, Greece. Cyclic and linear siloxanes (except for L3) were detected in all influent wastewater and sludge samples at mean concentrations of (sum of 17 siloxanes) 20 μg L-1 and 75 mg kg-1, respectively. The predominant compounds in wastewater were L11 (24% of the total siloxane concentration), L10 (16%), and D5 (13%), and in sludge were D5 (20%) and L10 (15%). The distribution of siloxanes between particulate and dissolved phases in influents differed significantly for linear and cyclic siloxanes. Linear siloxanes showed higher solid-liquid distribution coefficients (log Kd) than did cyclic compounds. For 10 of the 16 compounds detected in influents, the removal efficiency was higher than 80%. Sorption to sludge and biodegradation and/or volatilization losses are important factors that affect the fate of siloxanes in WWTPs. The mean total mass of siloxanes that enter into the WWTP via influent was 15.1 kg per day-1, and the mean total mass released into the environment via effluent was 2.67 kg per day-1. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
5. Determination of Benzotriazoles and Benzothiazoles in Human Urine by Liquid Chromatography-Tandem Mass Spectrometry.
- Author
-
Asimakopoulos, Alexandros G., Bletsou, Anna A., Qian Wu, Thomaidis, Nikolaos S., and Kannan, Kurunthachalam
- Subjects
- *
BENZOTRIAZOLE analysis , *BENZOTHIAZOLE analysis , *URINALYSIS , *LIQUID chromatography-mass spectrometry , *TANDEM mass spectrometry - Abstract
Benzotriazole (BTR) and benzothiazole (BTH) derivatives are used in a wide variety of industrial and consumer products and have been reported to occur in the environment. Owing to a lack of analytical methods, human exposure to BTR and BTH is still unknown. In this study, a liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI(+)MS/MS) method was developed for simultaneous determination of five 1,2,3-benzotriazoles and five 1,3-benzothiazoles in human urine. The target benzotriazoles were 1H-benzotriazole, 1-hydroxy-benzotriazole, tolyltriazole, xylyltriazole (or 5,6-dimethyl-1H-benzotriazole), and 5-chloro-benzotriazole, and the target benzothiazoles were benzothiazole, 2-hydroxy-benzothiazole, 2-methylthio-benzothiazole, 2-amino-benzothiazole, and 2-thiocyanomethylthio-benzothiazole. Urine specimens were enzymatically deconjugated with β-glucuronidase and extracted by a solid-phase extraction (SPE) procedure for the measurement of total concentrations (i.e., free + conjugated forms) of BTRs and BTHs. Additionally, a liquid-liquid extraction (LLE) method was developed for comparison of extraction efficiencies between SPE and LLE. The limits of detection (LODs) ranged from 0.07 (2-amino-benzothiazole) to 4.0 ng/mL (benzothiazole) for the SPE method and from 0.04 (tolyltriazole) to 6.4 ng/mL (benzothiazole) for the LLE method. A total of 100 urine specimens, collected from Athens, Greece, were analyzed by enzymatic deconjugation and SPE. Benzothiazole and tolyltriazole were found frequently, and their concentrations were on the order of a few ng/mL. To our knowledge, this is the first study on the occurrence of 10 BTR and BTH compounds in human urine. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
6. Synthetic Phenolic Antioxidants and Their Metabolites in Indoor Dust from Homes and Microenvironments.
- Author
-
Wang W, Asimakopoulos AG, Abualnaja KO, Covaci A, Gevao B, Johnson-Restrepo B, Kumosani TA, Malarvannan G, Minh TB, Moon HB, Nakata H, Sinha RK, and Kannan K
- Subjects
- Benzaldehydes analysis, Butylated Hydroxytoluene analogs & derivatives, Butylated Hydroxytoluene analysis, Gallic Acid analysis, Residence Characteristics, Antioxidants analysis, Dust analysis, Environmental Pollutants analysis, Phenols analysis
- Abstract
Synthetic phenolic antioxidants (SPAs), including 2,6-di-tert-butyl-4-hydroxytoluene (BHT), are extensively used in food, cosmetic and plastic industries. Nevertheless, limited information is available on human exposures, other than the dietary sources, to SPAs. In this study, occurrence of 9 SPAs and their metabolites/degradation products was determined in 339 indoor dust collected from 12 countries. BHT was found in 99.5% of indoor dust samples from homes and microenvironments at concentrations that ranged from < LOQ to 118 μg/g and 0.10 to 3460 μg/g, respectively. This is the first study to measure BHT metabolites in house dust (0.01-35.1 μg/g) and their concentrations accounted for 9.2-58% of the sum concentrations (∑SPAs). 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHT-CHO), 2,6-di-tert-butyl-4-(hydroxymethyl)phenol (BHT-OH), 2,6-di-tert-butyl-1,4-benzoquinone (BHT-Q) were the major derivatives of BHT found in dust samples. The concentrations of gallic acid esters (gallates) in dust from homes and microenvironments ranged from < LOQ to 18.2 and < LOQ to 684 μg/g, respectively. The concentrations and profiles of SPAs varied among countries and microenvironments. Significantly elevated concentrations of SPAs were found in dust from an e-waste workshop (1530 μg/g). The estimated daily intake (EDI) of BHT via house dust ingestion ranged from 0.40 to 222 ng/kg/d (95th percentile).
- Published
- 2016
- Full Text
- View/download PDF
7. Benzotriazole, benzothiazole, and benzophenone compounds in indoor dust from the United States and East Asian countries.
- Author
-
Wang L, Asimakopoulos AG, Moon HB, Nakata H, and Kannan K
- Subjects
- Asia, United States, Benzophenones analysis, Benzothiazoles analysis, Dust, Triazoles analysis
- Abstract
Organic corrosion inhibitors (OCIs), including ultraviolet light filters, are widely used in plastics, rubbers, colorants, and coatings to increase the performance of products. Derivatives of benzotriazole (BTR), benzothiazole (BTH), and benzophenone (BP) are high-production volume OCIs that have been detected in the environment and human tissues. However, knowledge of their occurrence in indoor environments, as well as human exposure to them, is still lacking. In this study, BTR, BTH, BP and their 12 derivatives were determined in indoor dust for the first time. All three groups of OCIs were found in all 158 indoor dust samples from the U.S. and three East Asian countries (China, Japan, and Korea). The geometric mean (GM) concentration of the sum of six BTRs (GM CΣBTRs) ranged from 20 to 90 ng/g among the four countries studied, with a maximum CΣBTRs of ∼2000 ng/g found in a dust sample from China. Tolyltriazole was the major derivative of BTR measured in dust. GM CΣBTHs in indoor dust from the four countries ranged from 600 to 2000 ng/g. 2-OH-BTH was the predominant BTH in dust from the U.S., Japan, and Korea. GM CΣBPs in dust ranged from 80 to 600 ng/g, with 2-OH-4-MeO-BP and 2,4-2OH-BP, contributing to the majority of ∑BP concentrations. Based on the concentrations of three types of OCIs in indoor dust, human exposure through dust ingestion was calculated. Daily intake of OCIs through dust ingestion was higher for people in the U.S., Japan, and Korea than in China; the residents in urban China are exposed to higher levels of OCIs via dust ingestion than are those in rural China.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.