1. Ultrasensitive SERS Detection of Five β-Blockers Achieved Using Chemometrics with a Two-Dimensional Substrate Formed by Large-Sized Ag@SiO 2 Nanoparticles.
- Author
-
Cheng T, Xie Z, Wang T, Jiang Y, Guo X, Liu X, Wen Y, Yang H, and Wu Y
- Subjects
- Humans, Limit of Detection, Principal Component Analysis, Particle Size, Surface Properties, Spectrum Analysis, Raman methods, Adrenergic beta-Antagonists analysis, Adrenergic beta-Antagonists urine, Silver chemistry, Silicon Dioxide chemistry, Metal Nanoparticles chemistry
- Abstract
We report on a surface-enhanced Raman scattering (SERS) platform for the detection of five beta-blockers (β-blockers): atenolol, esmolol, labetalol, sotalol, and propranolol. Key to this platform was a two-dimensional substrate formed by self-assembling large Ag@SiO
2 nanoparticles (Ag@SiO2 NPs) on a silicon wafer. The close arrangement of these large nanoparticles on the surface generated a strong and uniform electromagnetic field, which enhanced SERS signal intensity for the detection of small amounts of the target molecules. The intensities of characteristic peaks of the five β-blocker drugs increased linearly with the increase of their concentrations in the range of 10-5 to 10-8 mol/L. The detection limits were 10-10 mol/L for propranolol, 10-9 mol/L for atenolol, labetalol, and sotalol, and 10-8 mol/L for esmolol. Determination of these five β-blocker drugs added to human urine samples, using a portable Raman spectroscopy instrument, showed quantitative recovery (93-101%). Principal component analysis (PCA) and hierarchical cluster analysis (HCA) of SERS spectral data improved the differentiation among these five β-blockers. This study highlights the potential of the developed SERS platform for rapid, on-site detection of illicit drugs and for antidoping screening.- Published
- 2024
- Full Text
- View/download PDF