1. Ultrafast Intramolecular and Solvation Dynamics in 4,7-Bis (4,5-dibutylbenzo[1,2- b:4,3- b']bisthiophene[1,2- b:4,3- b']bisthiophen-2-yl)-2,1,3-benzothiadiazole
- Author
-
Barbara Patrizi, Alessandro Iagatti, Paolo Foggi, Laura Bussotti, Roberto Fusco, Stefano Zanardi, Luigi Abbondanza, and Mario Salvalaggio
- Subjects
Chemistry ,Solvation ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Acceptor ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Absorption spectroscopy ,Calculations: Charge transfer ,Dipole moment ,Dynamics ,Crystallography ,General Energy ,Ab initio quantum chemistry methods ,Intramolecular force ,Ultrafast laser spectroscopy ,Molecule ,Physical and Theoretical Chemistry ,0210 nano-technology ,Spectroscopy ,Conformational isomerism - Abstract
We report a combined approach of stationary and time-resolved fluorescence measurements and ultraviolet-visible (UV-vis) transient absorption spectroscopy (TAS) along with ab initio calculations, which provide an overall picture of the dynamics occurring after excitation in a push-pull molecule, namely, 4,7-bis (4,5-dibutylbenzo[1,2-b:4,3-b?]bisthiophene[1,2-b:4,3-b?]bisthiophen-2-yl)-2,1,3-benzothiadiazole. The analysis of the emission spectra in solvents of different polarities reveals the presence of three conformers whose structures differ in the orientation of the 4,5-dibutylbenzo-bisthiophene groups and in their planarity with respect to the benzothiadiazole acceptor group. The Kawski method allows us to estimate the ground- and first-excited state dipole moments (? g and ? e ) for the three conformers. We find values of ? e similar for the three conformers and higher than the relative ? g values as can be expected from a push-pull molecule undergoing a light-induced charge-transfer (CT) transition. UV-vis TAS in different solvents highlights the instantaneous (within our instrumental resolution) formation of a locally excited S 1 state (accompanied by a big change in the dipole moment with respect to S 0 ), which undergoes a rapid intramolecular CT (ICT) assisted by molecule planarization [planar ICT (PICT)]. The strong dipole-dipole interactions with the polarized solvent molecules stabilize the S 1 CT state that decays principally through fluorescence emission. Both PICT and solvation dynamics are responsible for the big Stokes' shift characterizing the molecule, particularly in polar solvents. The fluorescence lifetimes are substantially longer in polar solvents, and also fluorescence quantum yields are higher in polar solvents. We conclude that the radiative relaxation time increases when molecular planarization of the S 1 emissive state takes place, and this condition is favored in polar solvents where local dipole-dipole interactions support the structural stabilization of the CT emissive state. In the poly(methyl methacrylate) matrix, the structural and solvation dynamics are strongly inhibited, leading to reduction of nonradiative processes and to shortening of the fluorescence relaxation time
- Published
- 2019
- Full Text
- View/download PDF