1. Critical Roles for PU.1, GATA1, and GATA2 in the Expression of Human FcεRI on Mast Cells: PU.1 and GATA1 Transactivate FCER1A, and GATA2 Transactivates FCER1A and MS4A2.
- Author
-
Eisuke Inage, Kazumi Kasakura, Takuya Yashiro, Ryuyo Suzuki, Yosuke Baba, Nobuhiro Nakano, Mutsuko Hara, Atsushi Tanabe, Keisuke Oboki, Kenji Matsumoto, Hirohisa Saito, François Niyonsaba, Yoshikazu Ohtsuka, Hideoki Ogawa, Ko Okumura, Toshiaki Shimizu, and Chiharu Nishiyama
- Subjects
- *
MAST cells , *IMMUNOGLOBULIN E , *CHROMATIN , *RIBONUCLEASES , *CELL membranes - Abstract
The high-affinity IgE receptor, FcεRI, which is composed of α-, β-, and γ-chains, plays an important role in IgE-mediated allergic responses. In the current study, involvement of the transcription factors, PU.1, GATA1, and GATA2, in the expression of FcεRI on human mast cells was investigated. Transfection of small interfering RNAs (siRNAs) against PU.1, GATA1, and GATA2 into the human mast cell line, LAD2, caused significant downregulation of cell surface expression of FcεRI. Quantification of the mRNA levels revealed that PU.1, GATA1, and GATA2 siRNAs suppressed the α transcript, whereas the amount of β mRNA was reduced in only GATA2 siRNA transfectants. In contrast, γ mRNA levels were not affected by any of the knockdowns. Chromatin immunoprecipitation assay showed that significant amounts of PU.1, GATA1, and GATA2 bind to the promoter region of FCER1A (encoding FcεRIα) and that GATA2 binds to the promoter of MS4A2 (encoding FcεRIβ). Luciferase assay and EMSA showed that GATA2 transactivates the MS4A2 promoter via direct binding. These knockdowns of transcription factors also suppressed the IgE-mediated degranulation activity of LAD2. Similarly, all three knockdowns suppressed FcεRI expression in primary mast cells, especially PU.1 siRNA and GATA2 siRNA, which target FcεRIα and FcεRIβ, respectively. From these results, we conclude that PU.1 and GATA1 are involved in FcεRIα transcription through recruitment to its promoter, whereas GATA2 positively regulates FcεRIβ transcription. Suppression of these transcription factors leads to downregulation of FcεRI expression and IgE-mediated degranulation activity. Our findings will contribute to the development of new therapeutic approaches for FcεRI-mediated allergic diseases. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF