1. Control of intestinal inflammation by glycosylation-dependent lectin-driven immunoregulatory circuits.
- Author
-
Morosi LG, Cutine AM, Cagnoni AJ, Manselle-Cocco MN, Croci DO, Merlo JP, Morales RM, May M, Pérez-Sáez JM, Girotti MR, Méndez-Huergo SP, Pucci B, Gil AH, Huernos SP, Docena GH, Sambuelli AM, Toscano MA, Rabinovich GA, and Mariño KV
- Abstract
Diverse immunoregulatory circuits operate to preserve intestinal homeostasis and prevent inflammation. Galectin-1 (Gal1), a β-galactoside-binding protein, promotes homeostasis by reprogramming innate and adaptive immunity. Here, we identify a glycosylation-dependent "on-off" circuit driven by Gal1 and its glycosylated ligands that controls intestinal immunopathology by targeting activated CD8
+ T cells and shaping the cytokine profile. In patients with inflammatory bowel disease (IBD), augmented Gal1 was associated with dysregulated expression of core 2 β6- N -acetylglucosaminyltransferase 1 ( C2GNT1 ) and α(2,6)-sialyltransferase 1 ( ST6GAL1 ), glycosyltransferases responsible for creating or masking Gal1 ligands. Mice lacking Gal1 exhibited exacerbated colitis and augmented mucosal CD8+ T cell activation in response to 2,4,6-trinitrobenzenesulfonic acid; this phenotype was partially ameliorated by treatment with recombinant Gal1. While C2gnt1-/- mice exhibited aggravated colitis, St6gal1-/- mice showed attenuated inflammation. These effects were associated with intrinsic T cell glycosylation. Thus, Gal1 and its glycosylated ligands act to preserve intestinal homeostasis by recalibrating T cell immunity., (Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)- Published
- 2021
- Full Text
- View/download PDF