6 results on '"Howett, C. J. A."'
Search Results
2. Surface compositions across Pluto and Charon.
- Author
-
Grundy, W. M., Binzel, R. P., Buratti, B. J., Cook, J. C., Cruikshank, D. P., DalleOre, C. M., Earle, A. M., Ennico, K., Howett, C. J. A., Lunsford, A. W., Olkin, C. B., Parker, A. H., Philippe, S., Protopapa, S., Quirico, E., Reuter, D. C., Schmitt, B., Singer, K. N., Verbiscer, A. J., and Beyer, R. A.
- Subjects
- *
PLUTO (Dwarf planet) , *CHARON (Satellite) ,SURFACE - Abstract
A review is presented of the article "Surface compositions across Pluto and Charon" by W.M. Grundy, D.P. Cruikshank, C.M. Dalle Ore, and others concerning landforms detected by the New Horizons spacecraft as it passed the dwarf planet Pluto and its moon Charon in July 2015.
- Published
- 2016
- Full Text
- View/download PDF
3. The geology and geophysics of Kuiper Belt object (486958) Arrokoth.
- Author
-
Spencer JR, Stern SA, Moore JM, Weaver HA, Singer KN, Olkin CB, Verbiscer AJ, McKinnon WB, Parker JW, Beyer RA, Keane JT, Lauer TR, Porter SB, White OL, Buratti BJ, El-Maarry MR, Lisse CM, Parker AH, Throop HB, Robbins SJ, Umurhan OM, Binzel RP, Britt DT, Buie MW, Cheng AF, Cruikshank DP, Elliott HA, Gladstone GR, Grundy WM, Hill ME, Horanyi M, Jennings DE, Kavelaars JJ, Linscott IR, McComas DJ, McNutt RL Jr, Protopapa S, Reuter DC, Schenk PM, Showalter MR, Young LA, Zangari AM, Abedin AY, Beddingfield CB, Benecchi SD, Bernardoni E, Bierson CJ, Borncamp D, Bray VJ, Chaikin AL, Dhingra RD, Fuentes C, Fuse T, Gay PL, Gwyn SDJ, Hamilton DP, Hofgartner JD, Holman MJ, Howard AD, Howett CJA, Karoji H, Kaufmann DE, Kinczyk M, May BH, Mountain M, Pätzold M, Petit JM, Piquette MR, Reid IN, Reitsema HJ, Runyon KD, Sheppard SS, Stansberry JA, Stryk T, Tanga P, Tholen DJ, Trilling DE, and Wasserman LH
- Abstract
The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, is composed of primitive objects preserving information about Solar System formation. In January 2019, the New Horizons spacecraft flew past one of these objects, the 36-kilometer-long contact binary (486958) Arrokoth (provisional designation 2014 MU
69 ). Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters in diameter) within a radius of 8000 kilometers. Arrokoth has a lightly cratered, smooth surface with complex geological features, unlike those on previously visited Solar System bodies. The density of impact craters indicates the surface dates from the formation of the Solar System. The two lobes of the contact binary have closely aligned poles and equators, constraining their accretion mechanism., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)- Published
- 2020
- Full Text
- View/download PDF
4. Initial results from the New Horizons exploration of 2014 MU 69 , a small Kuiper Belt object.
- Author
-
Stern SA, Weaver HA, Spencer JR, Olkin CB, Gladstone GR, Grundy WM, Moore JM, Cruikshank DP, Elliott HA, McKinnon WB, Parker JW, Verbiscer AJ, Young LA, Aguilar DA, Albers JM, Andert T, Andrews JP, Bagenal F, Banks ME, Bauer BA, Bauman JA, Bechtold KE, Beddingfield CB, Behrooz N, Beisser KB, Benecchi SD, Bernardoni E, Beyer RA, Bhaskaran S, Bierson CJ, Binzel RP, Birath EM, Bird MK, Boone DR, Bowman AF, Bray VJ, Britt DT, Brown LE, Buckley MR, Buie MW, Buratti BJ, Burke LM, Bushman SS, Carcich B, Chaikin AL, Chavez CL, Cheng AF, Colwell EJ, Conard SJ, Conner MP, Conrad CA, Cook JC, Cooper SB, Custodio OS, Dalle Ore CM, Deboy CC, Dharmavaram P, Dhingra RD, Dunn GF, Earle AM, Egan AF, Eisig J, El-Maarry MR, Engelbrecht C, Enke BL, Ercol CJ, Fattig ED, Ferrell CL, Finley TJ, Firer J, Fischetti J, Folkner WM, Fosbury MN, Fountain GH, Freeze JM, Gabasova L, Glaze LS, Green JL, Griffith GA, Guo Y, Hahn M, Hals DW, Hamilton DP, Hamilton SA, Hanley JJ, Harch A, Harmon KA, Hart HM, Hayes J, Hersman CB, Hill ME, Hill TA, Hofgartner JD, Holdridge ME, Horányi M, Hosadurga A, Howard AD, Howett CJA, Jaskulek SE, Jennings DE, Jensen JR, Jones MR, Kang HK, Katz DJ, Kaufmann DE, Kavelaars JJ, Keane JT, Keleher GP, Kinczyk M, Kochte MC, Kollmann P, Krimigis SM, Kruizinga GL, Kusnierkiewicz DY, Lahr MS, Lauer TR, Lawrence GB, Lee JE, Lessac-Chenen EJ, Linscott IR, Lisse CM, Lunsford AW, Mages DM, Mallder VA, Martin NP, May BH, McComas DJ, McNutt RL Jr, Mehoke DS, Mehoke TS, Nelson DS, Nguyen HD, Núñez JI, Ocampo AC, Owen WM, Oxton GK, Parker AH, Pätzold M, Pelgrift JY, Pelletier FJ, Pineau JP, Piquette MR, Porter SB, Protopapa S, Quirico E, Redfern JA, Regiec AL, Reitsema HJ, Reuter DC, Richardson DC, Riedel JE, Ritterbush MA, Robbins SJ, Rodgers DJ, Rogers GD, Rose DM, Rosendall PE, Runyon KD, Ryschkewitsch MG, Saina MM, Salinas MJ, Schenk PM, Scherrer JR, Schlei WR, Schmitt B, Schultz DJ, Schurr DC, Scipioni F, Sepan RL, Shelton RG, Showalter MR, Simon M, Singer KN, Stahlheber EW, Stanbridge DR, Stansberry JA, Steffl AJ, Strobel DF, Stothoff MM, Stryk T, Stuart JR, Summers ME, Tapley MB, Taylor A, Taylor HW, Tedford RM, Throop HB, Turner LS, Umurhan OM, Van Eck J, Velez D, Versteeg MH, Vincent MA, Webbert RW, Weidner SE, Weigle GE 2nd, Wendel JR, White OL, Whittenburg KE, Williams BG, Williams KE, Williams SP, Winters HL, Zangari AM, and Zurbuchen TH
- Abstract
The Kuiper Belt is a distant region of the outer Solar System. On 1 January 2019, the New Horizons spacecraft flew close to (486958) 2014 MU
69 , a cold classical Kuiper Belt object approximately 30 kilometers in diameter. Such objects have never been substantially heated by the Sun and are therefore well preserved since their formation. We describe initial results from these encounter observations. MU69 is a bilobed contact binary with a flattened shape, discrete geological units, and noticeable albedo heterogeneity. However, there is little surface color or compositional heterogeneity. No evidence for satellites, rings or other dust structures, a gas coma, or solar wind interactions was detected. MU69 's origin appears consistent with pebble cloud collapse followed by a low-velocity merger of its two lobes., (Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)- Published
- 2019
- Full Text
- View/download PDF
5. The small satellites of Pluto as observed by New Horizons.
- Author
-
Weaver HA, Buie MW, Buratti BJ, Grundy WM, Lauer TR, Olkin CB, Parker AH, Porter SB, Showalter MR, Spencer JR, Stern SA, Verbiscer AJ, McKinnon WB, Moore JM, Robbins SJ, Schenk P, Singer KN, Barnouin OS, Cheng AF, Ernst CM, Lisse CM, Jennings DE, Lunsford AW, Reuter DC, Hamilton DP, Kaufmann DE, Ennico K, Young LA, Beyer RA, Binzel RP, Bray VJ, Chaikin AL, Cook JC, Cruikshank DP, Dalle Ore CM, Earle AM, Gladstone GR, Howett CJ, Linscott IR, Nimmo F, Parker JW, Philippe S, Protopapa S, Reitsema HJ, Schmitt B, Stryk T, Summers ME, Tsang CC, Throop HH, White OL, and Zangari AM
- Abstract
The New Horizons mission has provided resolved measurements of Pluto's moons Styx, Nix, Kerberos, and Hydra. All four are small, with equivalent spherical diameters of ~40 kilometers for Nix and Hydra and ~10 kilometers for Styx and Kerberos. They are also highly elongated, with maximum to minimum axis ratios of ~2. All four moons have high albedos (~50 to 90%) suggestive of a water-ice surface composition. Crater densities on Nix and Hydra imply surface ages of at least 4 billion years. The small moons rotate much faster than synchronous, with rotational poles clustered nearly orthogonal to the common pole directions of Pluto and Charon. These results reinforce the hypothesis that the small moons formed in the aftermath of a collision that produced the Pluto-Charon binary., (Copyright © 2016, American Association for the Advancement of Science.)
- Published
- 2016
- Full Text
- View/download PDF
6. The Pluto system: Initial results from its exploration by New Horizons.
- Author
-
Stern SA, Bagenal F, Ennico K, Gladstone GR, Grundy WM, McKinnon WB, Moore JM, Olkin CB, Spencer JR, Weaver HA, Young LA, Andert T, Andrews J, Banks M, Bauer B, Bauman J, Barnouin OS, Bedini P, Beisser K, Beyer RA, Bhaskaran S, Binzel RP, Birath E, Bird M, Bogan DJ, Bowman A, Bray VJ, Brozovic M, Bryan C, Buckley MR, Buie MW, Buratti BJ, Bushman SS, Calloway A, Carcich B, Cheng AF, Conard S, Conrad CA, Cook JC, Cruikshank DP, Custodio OS, Dalle Ore CM, Deboy C, Dischner ZJ, Dumont P, Earle AM, Elliott HA, Ercol J, Ernst CM, Finley T, Flanigan SH, Fountain G, Freeze MJ, Greathouse T, Green JL, Guo Y, Hahn M, Hamilton DP, Hamilton SA, Hanley J, Harch A, Hart HM, Hersman CB, Hill A, Hill ME, Hinson DP, Holdridge ME, Horanyi M, Howard AD, Howett CJ, Jackman C, Jacobson RA, Jennings DE, Kammer JA, Kang HK, Kaufmann DE, Kollmann P, Krimigis SM, Kusnierkiewicz D, Lauer TR, Lee JE, Lindstrom KL, Linscott IR, Lisse CM, Lunsford AW, Mallder VA, Martin N, McComas DJ, McNutt RL Jr, Mehoke D, Mehoke T, Melin ED, Mutchler M, Nelson D, Nimmo F, Nunez JI, Ocampo A, Owen WM, Paetzold M, Page B, Parker AH, Parker JW, Pelletier F, Peterson J, Pinkine N, Piquette M, Porter SB, Protopapa S, Redfern J, Reitsema HJ, Reuter DC, Roberts JH, Robbins SJ, Rogers G, Rose D, Runyon K, Retherford KD, Ryschkewitsch MG, Schenk P, Schindhelm E, Sepan B, Showalter MR, Singer KN, Soluri M, Stanbridge D, Steffl AJ, Strobel DF, Stryk T, Summers ME, Szalay JR, Tapley M, Taylor A, Taylor H, Throop HB, Tsang CC, Tyler GL, Umurhan OM, Verbiscer AJ, Versteeg MH, Vincent M, Webbert R, Weidner S, Weigle GE 2nd, White OL, Whittenburg K, Williams BG, Williams K, Williams S, Woods WW, Zangari AM, and Zirnstein E
- Abstract
The Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto's atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long-term activity raise fundamental questions about how small planets remain active many billions of years after formation. Pluto's large moon Charon displays tectonics and evidence for a heterogeneous crustal composition; its north pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected., (Copyright © 2015, American Association for the Advancement of Science.)
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.