18 results on '"C. Kremen"'
Search Results
2. Environmental impacts of genetically modified crops.
- Author
-
Noack F, Engist D, Gantois J, Gaur V, Hyjazie BF, Larsen A, M'Gonigle LK, Missirian A, Qaim M, Sargent RD, Souza-Rodrigues E, and Kremen C
- Subjects
- Humans, Pesticides toxicity, Pesticides adverse effects, Agriculture, Conservation of Natural Resources, Crops, Agricultural genetics, Plants, Genetically Modified adverse effects, Biodiversity, Environment
- Abstract
Genetically modified (GM) crops have been adopted by some of the world's leading agricultural nations, but the full extent of their environmental impact remains largely unknown. Although concerns regarding the direct environmental effects of GM crops have declined, GM crops have led to indirect changes in agricultural practices, including pesticide use, agricultural expansion, and cropping patterns, with profound environmental implications. Recent studies paint a nuanced picture of these environmental impacts, with mixed effects of GM crop adoption on biodiversity, deforestation, and human health that vary with the GM trait and geographic scale. New GM or gene-edited crops with different traits would likely have different environmental and human health impacts.
- Published
- 2024
- Full Text
- View/download PDF
3. Joint environmental and social benefits from diversified agriculture.
- Author
-
Rasmussen LV, Grass I, Mehrabi Z, Smith OM, Bezner-Kerr R, Blesh J, Garibaldi LA, Isaac ME, Kennedy CM, Wittman H, Batáry P, Buchori D, Cerda R, Chará J, Crowder DW, Darras K, DeMaster K, Garcia K, Gómez M, Gonthier D, Guzman A, Hidayat P, Hipólito J, Hirons M, Hoey L, James D, John I, Jones AD, Karp DS, Kebede Y, Kerr CB, Klassen S, Kotowska M, Kreft H, Llanque R, Levers C, Lizcano DJ, Lu A, Madsen S, Marques RN, Martins PB, Melo A, Nyantakyi-Frimpong H, Olimpi EM, Owen JP, Pantevez H, Qaim M, Redlich S, Scherber C, Sciligo AR, Snapp S, Snyder WE, Steffan-Dewenter I, Stratton AE, Taylor JM, Tscharntke T, Valencia V, Vogel C, and Kremen C
- Subjects
- Humans, Farms, Soil, Agriculture, Biodiversity, Conservation of Natural Resources, Ecosystem
- Abstract
Agricultural simplification continues to expand at the expense of more diverse forms of agriculture. This simplification, for example, in the form of intensively managed monocultures, poses a risk to keeping the world within safe and just Earth system boundaries. Here, we estimated how agricultural diversification simultaneously affects social and environmental outcomes. Drawing from 24 studies in 11 countries across 2655 farms, we show how five diversification strategies focusing on livestock, crops, soils, noncrop plantings, and water conservation benefit social (e.g., human well-being, yields, and food security) and environmental (e.g., biodiversity, ecosystem services, and reduced environmental externalities) outcomes. We found that applying multiple diversification strategies creates more positive outcomes than individual management strategies alone. To realize these benefits, well-designed policies are needed to incentivize the adoption of multiple diversification strategies in unison.
- Published
- 2024
- Full Text
- View/download PDF
4. Functional connectivity of the world's protected areas.
- Author
-
Brennan A, Naidoo R, Greenstreet L, Mehrabi Z, Ramankutty N, and Kremen C
- Subjects
- Animals, Biodiversity, Animal Migration, Conservation of Natural Resources, Mammals
- Abstract
Global policies call for connecting protected areas (PAs) to conserve the flow of animals and genes across changing landscapes, yet whether global PA networks currently support animal movement-and where connectivity conservation is most critical-remain largely unknown. In this study, we map the functional connectivity of the world's terrestrial PAs and quantify national PA connectivity through the lens of moving mammals. We find that mitigating the human footprint may improve connectivity more than adding new PAs, although both strategies together maximize benefits. The most globally important areas of concentrated mammal movement remain unprotected, with 71% of these overlapping with global biodiversity priority areas and 6% occurring on land with moderate to high human modification. Conservation and restoration of critical connectivity areas could safeguard PA connectivity while supporting other global conservation priorities.
- Published
- 2022
- Full Text
- View/download PDF
5. Agricultural diversification promotes multiple ecosystem services without compromising yield.
- Author
-
Tamburini G, Bommarco R, Wanger TC, Kremen C, van der Heijden MGA, Liebman M, and Hallin S
- Abstract
Enhancing biodiversity in cropping systems is suggested to promote ecosystem services, thereby reducing dependency on agronomic inputs while maintaining high crop yields. We assess the impact of several diversification practices in cropping systems on above- and belowground biodiversity and ecosystem services by reviewing 98 meta-analyses and performing a second-order meta-analysis based on 5160 original studies comprising 41,946 comparisons between diversified and simplified practices. Overall, diversification enhances biodiversity, pollination, pest control, nutrient cycling, soil fertility, and water regulation without compromising crop yields. Practices targeting aboveground biodiversity boosted pest control and water regulation, while those targeting belowground biodiversity enhanced nutrient cycling, soil fertility, and water regulation. Most often, diversification practices resulted in win-win support of services and crop yields. Variability in responses and occurrence of trade-offs highlight the context dependency of outcomes. Widespread adoption of diversification practices shows promise to contribute to biodiversity conservation and food security from local to global scales., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)
- Published
- 2020
- Full Text
- View/download PDF
6. A global synthesis reveals biodiversity-mediated benefits for crop production.
- Author
-
Dainese M, Martin EA, Aizen MA, Albrecht M, Bartomeus I, Bommarco R, Carvalheiro LG, Chaplin-Kramer R, Gagic V, Garibaldi LA, Ghazoul J, Grab H, Jonsson M, Karp DS, Kennedy CM, Kleijn D, Kremen C, Landis DA, Letourneau DK, Marini L, Poveda K, Rader R, Smith HG, Tscharntke T, Andersson GKS, Badenhausser I, Baensch S, Bezerra ADM, Bianchi FJJA, Boreux V, Bretagnolle V, Caballero-Lopez B, Cavigliasso P, Ćetković A, Chacoff NP, Classen A, Cusser S, da Silva E Silva FD, de Groot GA, Dudenhöffer JH, Ekroos J, Fijen T, Franck P, Freitas BM, Garratt MPD, Gratton C, Hipólito J, Holzschuh A, Hunt L, Iverson AL, Jha S, Keasar T, Kim TN, Kishinevsky M, Klatt BK, Klein AM, Krewenka KM, Krishnan S, Larsen AE, Lavigne C, Liere H, Maas B, Mallinger RE, Martinez Pachon E, Martínez-Salinas A, Meehan TD, Mitchell MGE, Molina GAR, Nesper M, Nilsson L, O'Rourke ME, Peters MK, Plećaš M, Potts SG, Ramos DL, Rosenheim JA, Rundlöf M, Rusch A, Sáez A, Scheper J, Schleuning M, Schmack JM, Sciligo AR, Seymour C, Stanley DA, Stewart R, Stout JC, Sutter L, Takada MB, Taki H, Tamburini G, Tschumi M, Viana BF, Westphal C, Willcox BK, Wratten SD, Yoshioka A, Zaragoza-Trello C, Zhang W, Zou Y, and Steffan-Dewenter I
- Subjects
- Agriculture methods, Biodiversity, Crop Production methods, Ecosystem, Humans, Pest Control, Biological methods, Pollination physiology, Crops, Agricultural metabolism, Crops, Agricultural physiology
- Abstract
Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society., (Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)
- Published
- 2019
- Full Text
- View/download PDF
7. Response.
- Author
-
Kremen C and Merenlender A
- Subjects
- Conservation of Natural Resources
- Published
- 2019
- Full Text
- View/download PDF
8. Landscapes that work for biodiversity and people.
- Author
-
Kremen C and Merenlender AM
- Subjects
- Agriculture, Climate Change, Forestry, Forests, Humans, Biodiversity, Conservation of Natural Resources
- Abstract
How can we manage farmlands, forests, and rangelands to respond to the triple challenge of the Anthropocene-biodiversity loss, climate change, and unsustainable land use? When managed by using biodiversity-based techniques such as agroforestry, silvopasture, diversified farming, and ecosystem-based forest management, these socioeconomic systems can help maintain biodiversity and provide habitat connectivity, thereby complementing protected areas and providing greater resilience to climate change. Simultaneously, the use of these management techniques can improve yields and profitability more sustainably, enhancing livelihoods and food security. This approach to "working lands conservation" can create landscapes that work for nature and people. However, many socioeconomic challenges impede the uptake of biodiversity-based land management practices. Although improving voluntary incentives, market instruments, environmental regulations, and governance is essential to support working lands conservation, it is community action, social movements, and broad coalitions among citizens, businesses, nonprofits, and government agencies that have the power to transform how we manage land and protect the environment., (Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2018
- Full Text
- View/download PDF
9. The value of pollinator species diversity.
- Author
-
Kremen C
- Subjects
- Flowers, Insecta, Species Specificity, Biodiversity, Pollination
- Published
- 2018
- Full Text
- View/download PDF
10. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems.
- Author
-
Barnosky AD, Hadly EA, Gonzalez P, Head J, Polly PD, Lawing AM, Eronen JT, Ackerly DD, Alex K, Biber E, Blois J, Brashares J, Ceballos G, Davis E, Dietl GP, Dirzo R, Doremus H, Fortelius M, Greene HW, Hellmann J, Hickler T, Jackson ST, Kemp M, Koch PL, Kremen C, Lindsey EL, Looy C, Marshall CR, Mendenhall C, Mulch A, Mychajliw AM, Nowak C, Ramakrishnan U, Schnitzler J, Das Shrestha K, Solari K, Stegner L, Stegner MA, Stenseth NC, Wake MH, and Zhang Z
- Subjects
- Animals, Climate Change, Endangered Species, Environmental Pollution, Gorilla gorilla, Humans, Introduced Species, Policy, Population Dynamics, Biodiversity, Conservation of Natural Resources methods, Conservation of Natural Resources trends, Extinction, Biological
- Abstract
Conservation of species and ecosystems is increasingly difficult because anthropogenic impacts are pervasive and accelerating. Under this rapid global change, maximizing conservation success requires a paradigm shift from maintaining ecosystems in idealized past states toward facilitating their adaptive and functional capacities, even as species ebb and flow individually. Developing effective strategies under this new paradigm will require deeper understanding of the long-term dynamics that govern ecosystem persistence and reconciliation of conflicts among approaches to conserving historical versus novel ecosystems. Integrating emerging information from conservation biology, paleobiology, and the Earth sciences is an important step forward on the path to success. Maintaining nature in all its aspects will also entail immediately addressing the overarching threats of growing human population, overconsumption, pollution, and climate change., (Copyright © 2017, American Association for the Advancement of Science.)
- Published
- 2017
- Full Text
- View/download PDF
11. Sustainability. Systems integration for global sustainability.
- Author
-
Liu J, Mooney H, Hull V, Davis SJ, Gaskell J, Hertel T, Lubchenco J, Seto KC, Gleick P, Kremen C, and Li S
- Subjects
- Animals, Biofuels, Earth, Planet, Endangered Species, Humans, Socioeconomic Factors, Ursidae, Biodiversity, Conservation of Natural Resources, Environmental Pollution, Systems Integration
- Abstract
Global sustainability challenges, from maintaining biodiversity to providing clean air and water, are closely interconnected yet often separately studied and managed. Systems integration—holistic approaches to integrating various components of coupled human and natural systems—is critical to understand socioeconomic and environmental interconnections and to create sustainability solutions. Recent advances include the development and quantification of integrated frameworks that incorporate ecosystem services, environmental footprints, planetary boundaries, human-nature nexuses, and telecoupling. Although systems integration has led to fundamental discoveries and practical applications, further efforts are needed to incorporate more human and natural components simultaneously, quantify spillover systems and feedbacks, integrate multiple spatial and temporal scales, develop new tools, and translate findings into policy and practice. Such efforts can help address important knowledge gaps, link seemingly unconnected challenges, and inform policy and management decisions., (Copyright © 2015, American Association for the Advancement of Science.)
- Published
- 2015
- Full Text
- View/download PDF
12. Loss of avian phylogenetic diversity in neotropical agricultural systems.
- Author
-
Frishkoff LO, Karp DS, M'Gonigle LK, Mendenhall CD, Zook J, Kremen C, Hadly EA, and Daily GC
- Subjects
- Animals, Conservation of Natural Resources, Costa Rica, Phylogeny, Species Specificity, Trees, Agriculture trends, Biodiversity, Birds classification, Extinction, Biological
- Abstract
Habitat conversion is the primary driver of biodiversity loss, yet little is known about how it is restructuring the tree of life by favoring some lineages over others. We combined a complete avian phylogeny with 12 years of Costa Rican bird surveys (118,127 detections across 487 species) sampled in three land uses: forest reserves, diversified agricultural systems, and intensive monocultures. Diversified agricultural systems supported 600 million more years of evolutionary history than intensive monocultures but 300 million fewer years than forests. Compared with species with many extant relatives, evolutionarily distinct species were extirpated at higher rates in both diversified and intensive agricultural systems. Forests are therefore essential for maintaining diversity across the tree of life, but diversified agricultural systems may help buffer against extreme loss of phylogenetic diversity., (Copyright © 2014, American Association for the Advancement of Science.)
- Published
- 2014
- Full Text
- View/download PDF
13. Wild pollinators enhance fruit set of crops regardless of honey bee abundance.
- Author
-
Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O, Bartomeus I, Benjamin F, Boreux V, Cariveau D, Chacoff NP, Dudenhöffer JH, Freitas BM, Ghazoul J, Greenleaf S, Hipólito J, Holzschuh A, Howlett B, Isaacs R, Javorek SK, Kennedy CM, Krewenka KM, Krishnan S, Mandelik Y, Mayfield MM, Motzke I, Munyuli T, Nault BA, Otieno M, Petersen J, Pisanty G, Potts SG, Rader R, Ricketts TH, Rundlöf M, Seymour CL, Schüepp C, Szentgyörgyi H, Taki H, Tscharntke T, Vergara CH, Viana BF, Wanger TC, Westphal C, Williams N, and Klein AM
- Subjects
- Animals, Bees physiology, Flowers physiology, Crops, Agricultural growth & development, Fruit growth & development, Insecta physiology, Pollination
- Abstract
The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields.
- Published
- 2013
- Full Text
- View/download PDF
14. Conservation: limits of land sparing.
- Author
-
Fischer J, Batáry P, Bawa KS, Brussaard L, Chappell MJ, Clough Y, Daily GC, Dorrough J, Hartel T, Jackson LE, Klein AM, Kremen C, Kuemmerle T, Lindenmayer DB, Mooney HA, Perfecto I, Philpott SM, Tscharntke T, Vandermeer J, Wanger TC, and Von Wehrden H
- Subjects
- Animals, Agriculture, Biodiversity, Conservation of Natural Resources, Crops, Agricultural growth & development, Ecosystem, Food
- Published
- 2011
- Full Text
- View/download PDF
15. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools.
- Author
-
Kremen C, Cameron A, Moilanen A, Phillips SJ, Thomas CD, Beentje H, Dransfield J, Fisher BL, Glaw F, Good TC, Harper GJ, Hijmans RJ, Lees DC, Louis E Jr, Nussbaum RA, Raxworthy CJ, Razafimpahanana A, Schatz GE, Vences M, Vieites DR, Wright PC, and Zjhra ML
- Subjects
- Algorithms, Animals, Ecosystem, Geography, Madagascar, Trees, Anura, Biodiversity, Conservation of Natural Resources methods, Insecta, Lemur, Lizards, Plants
- Abstract
Globally, priority areas for biodiversity are relatively well known, yet few detailed plans exist to direct conservation action within them, despite urgent need. Madagascar, like other globally recognized biodiversity hot spots, has complex spatial patterns of endemism that differ among taxonomic groups, creating challenges for the selection of within-country priorities. We show, in an analysis of wide taxonomic and geographic breadth and high spatial resolution, that multitaxonomic rather than single-taxon approaches are critical for identifying areas likely to promote the persistence of most species. Our conservation prioritization, facilitated by newly available techniques, identifies optimal expansion sites for the Madagascar government's current goal of tripling the land area under protection. Our findings further suggest that high-resolution multitaxonomic approaches to prioritization may be necessary to ensure protection for biodiversity in other global hot spots.
- Published
- 2008
- Full Text
- View/download PDF
16. Ecology: The Convention on Biological Diversity's 2010 target.
- Author
-
Balmford A, Bennun L, Brink BT, Cooper D, Côte IM, Crane P, Dobson A, Dudley N, Dutton I, Green RE, Gregory RD, Harrison J, Kennedy ET, Kremen C, Leader-Williams N, Lovejoy TE, Mace G, May R, Mayaux P, Morling P, Phillips J, Redford K, Ricketts TH, Rodríguez JP, Sanjayan M, Schei PJ, van Jaarsveld AS, and Walther BA
- Subjects
- Animals, Ecosystem, Humans, Interdisciplinary Communication, International Cooperation, Models, Biological, Models, Theoretical, Public Policy, Biodiversity, Conservation of Natural Resources, Ecology
- Published
- 2005
- Full Text
- View/download PDF
17. Rain forest conservation under review.
- Author
-
Di Leva C, Niles JO, Kremen C, Guillery P, Bonnie R, and Schwartzman S
- Published
- 2000
- Full Text
- View/download PDF
18. Economic incentives for rain forest conservation across scales.
- Author
-
Kremen C, Niles JO, Dalton MG, Daily GC, Ehrlich PR, Fay JP, Grewal D, and Guillery RP
- Subjects
- Agriculture, Carbon, Cost-Benefit Analysis, Developed Countries, Developing Countries, Greenhouse Effect, Industry, Madagascar, Conservation of Natural Resources economics, Ecosystem, Trees
- Abstract
Globally, tropical deforestation releases 20 to 30% of anthropogenic greenhouse gases. Conserving forests could reduce emissions, but the cost-effectiveness of this mechanism for mitigation depends on the associated opportunity costs. We estimated these costs from local, national, and global perspectives using a case study from Madagascar. Conservation generated significant benefits over logging and agriculture locally and globally. Nationally, however, financial benefits from industrial logging were larger than conservation benefits. Such differing economic signals across scales may exacerbate tropical deforestation. The Kyoto Protocol could potentially overcome this obstacle to conservation by creating markets for protection of tropical forests to mitigate climate change.
- Published
- 2000
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.