1. Comparison of (111)In-labeled somatostatin analogues for tumor scintigraphy and radionuclide therapy.
- Author
-
de Jong M, Breeman WA, Bakker WH, Kooij PP, Bernard BF, Hofland LJ, Visser TJ, Srinivasan A, Schmidt MA, Erion JL, Bugaj JE, Mäcke HR, and Krenning EP
- Subjects
- Animals, Humans, Male, Mice, Neoplasms radiotherapy, Octreotide pharmacokinetics, Octreotide therapeutic use, Pancreatic Neoplasms diagnosis, Pituitary Neoplasms diagnostic imaging, Pituitary Neoplasms pathology, Radionuclide Imaging, Rats, Rats, Inbred Lew, Rats, Wistar, Receptors, Somatostatin drug effects, Receptors, Somatostatin metabolism, Tissue Distribution, Indium Radioisotopes pharmacokinetics, Indium Radioisotopes therapeutic use, Neoplasms diagnostic imaging, Octreotide analogs & derivatives
- Abstract
We evaluated the following (111)In-labeled somatostatin (SS) analogues (diethylenetriaminepentaacetic acid, DTPA; tetraazacyclododecanetetraacetic acid, DOTA): [DTPA0]octreotide, [DTPA0,Tyr3]octreotide, [DTPA0,D-Tyr1]octreotide, [DTPA0,Tyr3]octreotate [Thr(ol) in octreotide replaced with Thr], and [DOTA0,Tyr3]octreotide, in vitro and in vivo. In vitro, all compounds showed high and specific binding to SS receptors in mouse pituitary AtT20 tumor cell membranes, and IC50s were in the nanomolar range. Furthermore, all compounds showed specific internalization in rat pancreatic tumor cells; uptake of [(111)In-DTPA0,Tyr3]octreotate was the highest of the compounds tested, and that of [(111)In-DTPA0,D-Tyr1]octreotide was the lowest. Biodistribution experiments in rats showed that, 4, 24, and 48 h after injection of [(111)In-DTPA0,Tyr3]octreotide, [(111)In-DTPA0,Tyr3]octreotate, and [(111)In-DOTA0,Tyr3]octreotide, radioactivity in the octreotide-binding, receptor-expressing tissues and tumor-to-blood ratios were significantly higher than those after injection of [(111)In-DTPA0]octreotide. Uptake of [(111)In-DTPA0,Tyr3]octreotate in the target organs was also, in vivo, the highest of the radiolabeled peptides tested, whereas that of [(111)In-DTPA0,D-Tyr1]octreotide was the lowest. Uptake of [(111)In-DTPA0,Tyr3]octreotide, [(111)In-DTPA0,Tyr3]octreotate, and [(111)In-DOTA0,Tyr3]octreotide in target tissues was blocked by >90% by 0.5 mg of unlabeled octreotide, indicating specific binding to the octreotide receptors. Blockade of [(111)In-DTPA0,D-Tyr1]octreotide was >70%. In conclusion, radiolabeled [DTPA0,Tyr3]octreotide and, especially, [DTPA0,Tyr3]octreotate and their DOTA-coupled counterparts are most promising for scintigraphy and radionuclide therapy of SS receptor-positive tumors in humans.
- Published
- 1998