1. Direct reaction experimental studies with beams of radioactive tin ions
- Author
-
Alexandra Gade, K. L. Jones, Kathrin Wimmer, A. Shore, A. Galindo-Uribarri, Jolie Cizewski, Caroline D Nesaraja, S. Burcher, J. S. Berryman, Patrick O'Malley, M. Matos, R. L. Kozub, M. E. Howard, D. Bazin, D. W. Bardayan, S. McDaniel, Elizabeth Padilla-Rodal, J. R. Beene, Robert Grzywacz, T. Baugher, Lucia Cartegni, B. Manning, S. Ahn, S. R. Stroberg, R. F. Garcia-Ruiz, S. Padgett, K. T. Schmitt, J. F. Liang, Michael Scott Smith, Steven D. Pain, Andrew Ratkiewicz, A. Bey, D. Weisshaar, J. A. Tostevin, K. Y. Chae, G. Cerizza, S. T. Pittman, D. C. Radford, David Miller, D. W. Stracener, J. M. Allmond, R. L. Varner, A. Ayres, R. Winkler, and C. R. Bingham
- Subjects
Radioactive ion beams ,Nuclear physics ,Isotope ,chemistry ,Stable isotope ratio ,Nuclear Theory ,Isotopes of tin ,chemistry.chemical_element ,Neutron ,Nuclear Experiment ,Tin ,Particle identification ,Ion - Abstract
The tin chain of isotopes provides a unique region in which to investigate the evolution of single-particle structure, spreading from N = 50 at 100Sn, through 10 stable isotopes and the N = 82 shell closure at 132Sn out into the r-process path. Direct reactions performed on radioactive ion beams are sensitive spectroscopic tools for studying exotic nuclei. Here we present one experiment knocking out neutrons from tin isotopes that are already neutron deficient and two reactions that add a neutron to neutron-rich 130Sn. Both techniques rely on selective particle identification and the measurement of γ rays in coincidence with charged ions. We present the goals of the two experiments and the particle identification for the channels of interest. The final results will be presented in future publications.
- Published
- 2015
- Full Text
- View/download PDF