1. Measurements of internal optical loss inside an operating laser diode
- Author
-
Nikita A. Pikhtin, Yu. K. Bobretsova, D. A. Veselov, V. V. Shamakhov, A. Y. Leshko, and Sergey O. Slipchenko
- Subjects
010302 applied physics ,Materials science ,Laser diode ,business.industry ,Doping ,Physics::Optics ,General Physics and Astronomy ,Heterojunction ,02 engineering and technology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,Laser ,01 natural sciences ,Waveguide (optics) ,law.invention ,Semiconductor laser theory ,Condensed Matter::Materials Science ,law ,0103 physical sciences ,Optoelectronics ,Quantum efficiency ,0210 nano-technology ,business ,Absorption (electromagnetic radiation) - Abstract
An experimental technique for measuring internal optical loss in high-power edge-emitting semiconductor lasers is demonstrated. The technique is based on coupling a probe beam into the waveguide of a pulse-pumped laser diode. It allows measuring free-carrier absorption (FCA) in a laser heterostructure at different temperatures and at pump current levels up to 30 kA/cm2. Measurement results are presented for two laser heterostructure designs, which vary in the waveguide doping level and material. For both heterostructures, the pump current increase induces a significant rise in FCA and a corresponding increase in internal optical loss, from 0.4–0.7 cm−1 at the threshold current to 2–2.5 cm−1 at 15 kA/cm2. At higher temperatures, the dependence is even stronger and the internal optical loss rises to 6 cm−1 (65 °C, 27 kA/cm2). The gradient of the FCA current dependence is lower for the laser heterostructure with a doped GaAs waveguide, while the heterostructure with an undoped AlGaAs waveguide displays a larger increase in FCA but better internal quantum efficiency at high currents. These results show that the proposed experimental method has significant potential.An experimental technique for measuring internal optical loss in high-power edge-emitting semiconductor lasers is demonstrated. The technique is based on coupling a probe beam into the waveguide of a pulse-pumped laser diode. It allows measuring free-carrier absorption (FCA) in a laser heterostructure at different temperatures and at pump current levels up to 30 kA/cm2. Measurement results are presented for two laser heterostructure designs, which vary in the waveguide doping level and material. For both heterostructures, the pump current increase induces a significant rise in FCA and a corresponding increase in internal optical loss, from 0.4–0.7 cm−1 at the threshold current to 2–2.5 cm−1 at 15 kA/cm2. At higher temperatures, the dependence is even stronger and the internal optical loss rises to 6 cm−1 (65 °C, 27 kA/cm2). The gradient of the FCA current dependence is lower for the laser heterostructure with a doped GaAs waveguide, while the heterostructure with an undoped AlGaAs waveguide displays a lar...
- Published
- 2019