1. Infrared signatures of isomer selectivity and symmetry breaking in the Cs+(H2O)3 complex using many-body potential energy functions
- Author
-
Marc Riera, Paesani Lab, Ryan P. Steele, and Justin J. Talbot
- Subjects
Physics ,010304 chemical physics ,Infrared ,General Physics and Astronomy ,Infrared spectroscopy ,010402 general chemistry ,01 natural sciences ,Potential energy ,0104 chemical sciences ,Ion ,Chemical physics ,0103 physical sciences ,Potential energy surface ,Cluster (physics) ,Field theory (psychology) ,Symmetry breaking ,Physics::Chemical Physics ,Physical and Theoretical Chemistry - Abstract
A quantitative description of the interactions between ions and water is key to characterizing the role played by ions in mediating fundamental processes that take place in aqueous environments. At the molecular level, vibrational spectroscopy provides a unique means to probe the multidimensional potential energy surface of small ion−water clusters. In this study, we combine the MB-nrg potential energy functions recently developed for ion−water interactions with perturbative corrections to vibrational self-consistent field theory and the local-monomer approximation to disentangle many-body effects on the stability and vibrational structure of the Cs+(H2O)3 cluster. Since several low-energy, thermodynamically accessible isomers exist for Cs+(H2O)3, even small changes in the description of the underlying potential energy surface can result in large differences in the relative stability of the various isomers. Our analysis demonstrates that a quantitative account for three-body energies and explicit treatment of cross-monomer vibrational couplings are required to reproduce the experimental spectrum.
- Published
- 2020
- Full Text
- View/download PDF