1. Role of hot electrons in shock ignition constrained by experiment at the National Ignition Facility
- Author
-
D. Barlow, T. Goffrey, K. Bennett, R. H. H. Scott, K. Glize, W. Theobald, K. Anderson, A. A. Solodov, M. J. Rosenberg, M. Hohenberger, N. C. Woolsey, P. Bradford, M. Khan, and T. D. Arber
- Subjects
Condensed Matter Physics - Abstract
Shock ignition is a scheme for direct drive inertial confinement fusion that offers the potential for high gain with the current generation of laser facility; however, the benefits are thought to be dependent on the use of low adiabat implosions without laser–plasma instabilities reducing drive and generating hot electrons. A National Ignition Facility direct drive solid target experiment was used to calibrate a 3D Monte Carlo hot-electron model for 2D radiation-hydrodynamic simulations of a shock ignition implosion. The [Formula: see text] adiabat implosion was calculated to suffer a 35% peak areal density decrease when the hot electron population with temperature [Formula: see text] and energy [Formula: see text] was added to the simulation. Optimizing the pulse shape can recover [Formula: see text] of the peak areal density lost due to a change in shock timing. Despite the harmful impact of laser–plasma instabilities, the simulations indicate shock ignition as a viable method to improve performance and broaden the design space of near ignition high adiabat implosions.
- Published
- 2022