1. The coexistence curve of finite charged nuclear matter
- Author
-
C. P. McParland, D. L. Olson, M. A. McMahan, Z. Caccia, M. D. Partlan, S. Wang, R. Potenza, Ralph G. Korteling, J. Romanski, H. Breuer, M. L. Tincknell, H. H. Wieman, H. Sann, N. T. Porile, B. K. Srivastava, R. P. Scharenberg, M. L. Gilkes, D. Keane, A. Ruangma, T. J. M. Symons, Sherry Yennello, Wolfgang Müller, G. V. Russo, H. S. Matis, G. J. Wozniak, Y. Shao, C. Tuve, J. O. Rasmussen, Kris Kwiatkowski, J. L. Chance, D. Cebra, E. Hjort, J. B. Elliott, V. Lindenstruth, Luc Beaulieu, P. Warren, V. E. Viola, M. Justice, J. L. Romero, F. S. Bieser, K.L. Wolf, A. Scott, S. Costa, Y. Choi, M. A. Lisa, T. Lefort, F. P. Brady, G. Rai, J. C. Kintner, A. Insolia, L. Phair, T. Wienold, A. D. Chacon, J. A. Hauger, A. S. Hirsch, L. Pienkowski, H. G. Ritter, L. G. Moretto, and S. Albergo
- Subjects
Binodal ,Physics ,Nuclear physics ,Tricritical point ,Electric potential energy ,Nuclear Theory ,Nuclear drip line ,Nuclear Experiment ,Nuclear matter ,Critical exponent ,Effective nuclear charge ,Critical point (mathematics) - Abstract
The multifragmentation data of the ISiS Collaboration and the EOS Collaboration are examined. Fisher's droplet formalism, modified to account for Coulomb energy, is used to determine the critical exponents {tau} and {sigma}, the surface energy coefficient c{sub 0}, the pressure-temperature-density coexistence curve of finite nuclear matter and the location of the critical point.
- Published
- 2002