1. A memory access number constraint-based string prediction technique for high throughput SCC implemented in AVS3.
- Author
-
Zhao, Liping, Yan, Zuge, Hu, Keli, Feng, Sheng, Wang, Jiangda, Cao, Xueyan, and Lin, Tao
- Abstract
• The first study to improve decoder pixel throughput by limiting the number of memory access. • A memory access number constraint-based string prediction (SP) framework is proposed. • A specific memory access number constraint rule is designed for SP-coded coding units. • A constrained rate-distortion-optimization-based string searching method is presented. String prediction (SP) is a highly efficient screen content coding (SCC) tool that has been adopted in international and Chinese video coding standards. SP exhibits a highly flexible and efficient ability to predict repetitive matching patterns. However, SP also suffers from low throughput of decoded display output pixels per memory access, which is synchronized with the decoder clock, due to the high number of memory accesses required to decode an SP coding unit for display. Even in state-of-the-art (SOTA) SP, the worst-case scenario involves two memory accesses for decoding each 4-pixel basic string unit across two memory access units, resulting in a throughput as low as two pixels per memory access (PPMA). To solve this problem, we are the first to propose a technique called memory access number constraint-based string prediction (MANC-SP) to achieve high throughput in SCC. First, a novel MANC-SP framework is proposed, a well-designed memory access number constraint rule is established on the basis of statistical data, and a constrained RDO-based string searching method is presented. Compared with the existing SOTA SP, the experimental results demonstrate that MANC-SP can improve the throughput from 2 to 2.67 PPMA, achieving a throughput improvement of 33.33% while maintaining a negligible impact on coding efficiency and complexity. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF