1. Physical-density integral equation methods for scattering from multi-dielectric cylinders.
- Author
-
Helsing, Johan and Karlsson, Anders
- Subjects
- *
INTEGRAL equations , *INTEGRAL representations , *ELECTROMAGNETIC fields , *SURFACE potential , *HELMHOLTZ equation - Abstract
An integral equation-based numerical method for scattering from multi-dielectric cylinders is presented. Electromagnetic fields are represented via layer potentials in terms of surface densities with physical interpretations. The existence of null-field representations then adds superior flexibility to the modeling. Local representations are used for fast field evaluation at points away from their sources. Partially global representations, constructed as to reduce the strength of kernel singularities, are used for near-evaluations. A mix of local- and partially global representations is also used to derive the system of integral equations from which the physical densities are solved. Unique solvability is proven for the special case of scattering from a homogeneous cylinder under rather general conditions. High achievable accuracy is demonstrated for several examples found in the literature. • Fast and accurate direct solver applied at triple junctions. • Mix of local and global integral representations for efficient integral equation modeling. • Unique solutions guaranteed in special situations, also for negative permittivity ratios. • Reduced strength of kernel singularities gives accurate field evaluations close to boundaries. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF