1. Development of foam-like emulsion phases in porous media flow.
- Author
-
Kharrat A, Brandstätter B, Borji M, Ritter R, Arnold P, Fritz-Popovski G, Paris O, and Ott H
- Subjects
- Emulsions, Porosity, Surface Tension, Surface-Active Agents, Water
- Abstract
Hypothesis: While surfactant solutions mobilize residual oil under optimal conditions by lowering the water-oil interfacial tension, emulsion phases outside of the optimum tend to be immobile. How are mobility and texture of such phases related, and how can the stability of these phases be understood? Can non-optimized surfactant solutions improve displacement processes through mobility control?, Experiment: Emulsification and miscibility during surfactant flooding were investigated in microfluidics with generic oil and surfactant solutions. The salt concentration was varied in an exceptionally wide range across the optimal displacement conditions. The resulting emulsion textures were characterized in situ by optical and fluorescence microscopy and ex situ visually and by Small-Angle X-ray Scattering., Findings: During displacement, oil is increasingly solubilized and transported in a phase with a foam-like texture that develops from a droplet traffic flow. The extent and stability of these emulsion phases depend on the salinity and surfactant efficiency. The similarity with textures of classic foam phases is used to hypothesize the mechanisms that stabilize such macroemulsions in porous media. The observed microscopic displacement mechanisms can be traced back to foam formation, quality and transport. The resulting phases are of particular interest for mobility control during surfactant flooding, which, however, requires further investigation., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF