1. Characterization of the peripheral FAAH inhibitor, URB937, in animal models of acute and chronic migraine.
- Author
-
Greco R, Demartini C, Zanaboni A, Casini I, De Icco R, Reggiani A, Misto A, Piomelli D, and Tassorelli C
- Subjects
- Animals, Behavior, Animal drug effects, Cytokines drug effects, Cytokines metabolism, Disease Models, Animal, Male, Medulla Oblongata drug effects, Medulla Oblongata metabolism, Neuropeptides drug effects, Neuropeptides metabolism, Rats, Rats, Sprague-Dawley, Trigeminal Ganglion drug effects, Trigeminal Ganglion metabolism, Amidohydrolases antagonists & inhibitors, Cannabinoids pharmacology, Migraine Disorders
- Abstract
Inhibiting the activity of fatty-acid amide hydrolase (FAAH), the enzyme that deactivates the endocannabinoid anandamide, enhances anandamide-mediated signaling and holds promise as a molecular target for the treatment of human pathologies such as anxiety and pain. We have previously shown that the peripherally restricted FAAH inhibitor, URB937, prevents nitroglycerin-induced hyperalgesia - an animal model of migraine - and attenuates the activation of brain areas that are relevant for migraine pain, e.g. trigeminal nucleus caudalis and locus coeruleus. The current study is aimed at profiling the behavioral and biochemical effects of URB937 in animal models of acute and chronic migraine. We evaluated the effects of URB937 in two rat models that capture aspects of acute and chronic migraine, and are based on single or repeated administration of the vasodilating drug, nitroglycerin (NTG). In addition to nocifensive behavior, in trigeminal ganglia and medulla, we measured mRNA levels of neuropeptides and pro-inflammatory cytokines along with tissue levels of anandamide and palmitoylethanolamide (PEA), an endogenous agonist of peroxisome proliferator-activated receptor type-a (PPAR-a), which is also a FAAH substrate. In the acute migraine model, we also investigated the effect of subtype-selective antagonist for cannabinoid receptors 1 and 2 (AM251 and AM630, respectively) on nocifensive behavior and on levels of neuropeptides and pro-inflammatory cytokines. In the acute migraine paradigm, URB937 significantly reduced hyperalgesia in the orofacial formalin test when administered either before or after NTG. This effect was accompanied by an increase in anandamide and PEA levels in target neural tissue, depended upon CB1 receptor activation, and was associated with a decrease in calcitonin gene-related peptide (CGRP), substance P and cytokines TNF-alpha and IL-6 mRNA. Similar effects were observed in the chronic migraine paradigm, where URB937 counteracted NTG-induced trigeminal hyperalgesia and prevented the increase in neuropeptide and cytokine transcription. The results show that peripheral FAAH inhibition by URB937 effectively reduces both acute and chronic NTG-induced trigeminal hyperalgesia, likely via augmented anandamide-mediated CB1 receptor activation. These effects are associated with inhibition of neuropeptidergic and inflammatory pathways., (Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF