4 results on '"Otahal, Jakub"'
Search Results
2. The role of interictal discharges in ictogenesis - A dynamical perspective.
- Author
-
Chvojka J, Kudlacek J, Chang WC, Novak O, Tomaska F, Otahal J, Jefferys JGR, and Jiruska P
- Subjects
- Humans, Neurons, Seizures, Electroencephalography, Epilepsy
- Abstract
Interictal epileptiform discharge (IED) is a traditional hallmark of epileptic tissue that is generated by the synchronous activity of a population of neurons. Interictal epileptiform discharges represent a heterogeneous group of pathological activities that differ in shape, duration, spatiotemporal distribution, underlying cellular and network mechanisms, and their relationship to seizure genesis. The exact role of IEDs in epilepsy is still not well understood, and there remains a persistent dichotomy about the impact on IEDs on seizures. Proseizure, antiseizure, and no impact on ictogenesis have all been described in previous studies. In this article, we review the existing knowledge on the role of interictal discharges in seizure genesis, and we discuss how dynamical approaches to ictogenesis can explain the existing dichotomy about the multifaceted role of IEDs in ictogenesis. This article is part of the Special Issue "NEWroscience 2018"., (Copyright © 2018 Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
3. Long-term seizure dynamics are determined by the nature of seizures and the mutual interactions between them.
- Author
-
Kudlacek J, Chvojka J, Kumpost V, Hermanovska B, Posusta A, Jefferys JGR, Maturana MI, Novak O, Cook MJ, Otahal J, Hlinka J, and Jiruska P
- Subjects
- Animals, Electroencephalography methods, Electroencephalography trends, Epilepsy, Temporal Lobe chemically induced, Male, Rats, Rats, Sprague-Dawley, Rats, Wistar, Seizures chemically induced, Tetanus Toxin toxicity, Time Factors, Epilepsy, Temporal Lobe physiopathology, Seizures physiopathology
- Abstract
The seemingly random and unpredictable nature of seizures is a major debilitating factor for people with epilepsy. An increasing body of evidence demonstrates that the epileptic brain exhibits long-term fluctuations in seizure susceptibility, and seizure emergence seems to be a consequence of processes operating over multiple temporal scales. A deeper insight into the mechanisms responsible for long-term seizure fluctuations may provide important information for understanding the complex nature of seizure genesis. In this study, we explored the long-term dynamics of seizures in the tetanus toxin model of temporal lobe epilepsy. The results demonstrate the existence of long-term fluctuations in seizure probability, where seizures form clusters in time and are then followed by seizure-free periods. Within each cluster, seizure distribution is non-Poissonian, as demonstrated by the progressively increasing inter-seizure interval (ISI), which marks the approaching cluster termination. The lengthening of ISIs is paralleled by: increasing behavioral seizure severity, the occurrence of convulsive seizures, recruitment of extra-hippocampal structures and the spread of electrographic epileptiform activity outside of the limbic system. The results suggest that repeated non-convulsive seizures obey the 'seizures-beget-seizures' principle, leading to the occurrence of convulsive seizures, which decrease the probability of a subsequent seizure and, thus, increase the following ISI. The cumulative effect of repeated convulsive seizures leads to cluster termination, followed by a long inter-cluster period. We propose that seizures themselves are an endogenous factor that contributes to long-term fluctuations in seizure susceptibility and their mutual interaction determines the future evolution of disease activity., (Crown Copyright © 2021. Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
4. Activation of either the ETA or the ETB receptors is involved in the development of electrographic seizures following intrahippocampal infusion of the endothelin-1 in immature rats.
- Author
-
Tsenov G, Vondrakova K, Otahal J, Burchfiel J, and Kubova H
- Subjects
- Animals, Endothelin-1 toxicity, Hippocampus drug effects, Injections, Intraventricular, Male, Rats, Rats, Wistar, Receptor, Endothelin A agonists, Receptor, Endothelin B agonists, Seizures chemically induced, Electroencephalography drug effects, Endothelin-1 administration & dosage, Hippocampus metabolism, Receptor, Endothelin A metabolism, Receptor, Endothelin B metabolism, Seizures metabolism
- Abstract
The period around birth is a risky time for stroke in infants, which is associated with two major acute and subacute processes: anatomical damage and seizures. It is unclear as to what extent each of these processes independently contributes to poor outcome. Furthermore, it is unclear whether there is an interaction between the two processes - does seizure activity cause additional brain damage beyond that produced by ischemia and/or does brain damage foster seizures? The model of focal cerebral ischemia induced by the intrahippocampal infusion of endothelin-1 (ET-1) in 12-day-old rat was used to examine the role of the endothelin receptors in the development of focal ischemia, symptomatic acute seizures and neurodegeneration. ET-1 (40pmol/μl) was infused either alone or co-administered with selective antagonists of ETA (BQ123; 70nmol/μl) or ETB receptors (BQ788; 70nmol/1μl). Effects of activation of ETB receptors were studied using selective agonist 4-Ala-ET-1 (40pmol/1μl). Regional cerebral blood flow (rCBF) and tissue oxygenation (pO2) were measured in anesthetized animals with a Doppler-flowmeter and a pO2-sensor, respectively. Seizure development was assessed with video-EEG in freely moving rats. Controls received the corresponding volume of the appropriate vehicle (10mM PBS or 0.01% DMSO-PBS solution; pH7.4). The extent of hippocampal lesion was determined using FluoroJade B staining performed 24h after ET-1 infusion. Infusion of ET-1 or ET-1+ETB receptor antagonist reduced rCBF to ~25% and pO2 to ~10% for about 1.5h, whereas selective ETB agonist, ET-1+ETA antagonist and the PBS vehicle had only negligible effect on the rCBF and pO2 levels. Reduction of rCBF was associated with the development of lesion in the injected hippocampus. In all groups, except sham operated and PBS controls, epileptiform activity was observed after activation of the ETA or the ETB receptors. The data revealed a positive correlation between the severity of morphological damage and all the measured seizure parameters (seizure frequency, average and total seizure duration) in the ET-1 group. In addition, the severity of morphological damage positively correlated with the average seizure duration in animals after infusion of ET-1+ETA receptor antagonist or after infusion of ET-1+ETB receptor antagonist. Our results indicate that the activation of ETA receptors is crucial for ischemia development, however either ETA or ETB receptors mediate the development of seizures following the application of ET-1 in immature rats. The dissociation between the ischemic-producing and seizure-producing processes suggests that damage is not necessary to induce seizures, although it may exacerbate them., (Copyright © 2014 Elsevier Inc. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.