1. Molecular and functional analysis of PmC1qDC in nacre formation of Pinctada fucata martensii.
- Author
-
Xie B, He Q, Hao R, Zheng Z, and Du X
- Subjects
- Amino Acid Sequence, Animal Shells, Animals, Base Sequence, Complement C1q chemistry, Pinctada metabolism, Protein Domains, RNA Interference, Complement C1q genetics, Nacre biosynthesis, Pinctada genetics
- Abstract
The C1q-domain-containing (C1qDC) proteins are a family of proteins characterized by a globular C1q (gC1q) domain in their C-terminus which hold the potential function in the shell formation as shell matrix proteins. In this study, a C1qDC protein was identified and characterized in pearl oyster (Pinctada fucata martensii) (PmC1qDC) to explore its function in nacre formation. The PmC1qDC-deduced protein sequence carried a typical globular C1q (gC1q) domain that possessed the typical 10-stranded β-sandwich fold with a jelly-roll topology common to all C1qDC family members and shared high homology with other gC1q domains. Homologous analysis of PmC1qDC presented it contained conserved secondary structure and Phe135, Phe155, Tyr166, Phe173, Tyr181, Phe183, and Phe256 amino acid residues. Expression pattern analysis showed that PmC1qDC expressed in all the detected tissues and exhibited a significantly higher expression level in nacre formation-associated tissues. After the shell notching, the expression level of PmC1qDC showed significantly up-regulation after 12 h in the central zone of mantle (MC). PmC1qDC expression significantly decreased in the MC after RNA interference (RNAi). Furthermore, disordered crystals with evident rough surface and irregular crystal tablets were observed in the nacre after RNAi. Results suggested that PmC1qDC affects the shell nacre formation, which is significant to improve the pearl production of pearl oyster., (Copyright © 2020 Elsevier Ltd. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF