1. Recalcitrant carbon for composting of fibrous aquatic waste: Degradation kinetics, spectroscopic study and effect on physico-chemical and nutritional properties.
- Author
-
Jain MS, Paul S, and Kalamdhad AS
- Subjects
- Animals, Carbon, Cattle, Female, Kinetics, Nitrogen, Soil, Composting
- Abstract
Biochar, a recalcitrant carbon, is known to enhance organic matter degradation and improve physical properties. The objective of the study is to examine the probable effect of biochar addition during composting of a fibrous aquatic waste, i.e., water hyacinth though degradation kinetics and spectroscopic (FTIR and PXRD) analysis. Four dosages of biochar (0, 2.5, 5, and 10% w/w) were mixed to a mixture of water hyacinth, cow-dung and saw-dust comprising a total weight of 150 kg and composted using rotary drum composter for 20 days in batch mode. The study outcomes indicated that the amendment of biochar prolonged the duration of the thermophilic temperatures, reduced salinity, and promoted nutritional quality of compost. Moreover, biochar amendment enhanced the organic matter degradation with a rate constant of 0.029 day
-1 and increased the total Kjeldahl nitrogen content up to 1.75% from an initial value of 1.10% in the reactor with 2.5% biochar amendment. Concurrently, biochar amendment aided in reducing Cu and Cr in the final product inferring 2.5% biochar is best suited for composting of water hyacinth. However, future studies are encouraged to decipher the microbial shifts and bioavailability of metals due to biochar dosage during composting for mitigating and managing the menace of such fibrous waste like water hyacinth by converting it to a soil conditioner., (Copyright © 2019 Elsevier Ltd. All rights reserved.)- Published
- 2019
- Full Text
- View/download PDF