1. Evolution of microstructure in mixed niobia-hybrid silica thin films from sol-gel precursors.
- Author
-
Besselink R, Stawski TM, Castricum HL, and ten Elshof JE
- Subjects
- Solvents, Surface Properties, Membranes, Artificial, Niobium chemistry, Silicon Dioxide chemistry
- Abstract
The evolution of structure in sol-gel derived mixed bridged silsesquioxane-niobium alkoxide sols and drying thin films was monitored in situ by small-angle X-ray scattering. Since sol-gel condensation of metal alkoxides proceeds much faster than that of silicon alkoxides, the incorporation of d-block metal dopants into silica typically leads to formation of densely packed nano-sized metal oxide clusters that we refer as metal oxide building blocks in a silica-based matrix. SAXS was used to study the process of niobia building block formation while drying the sol as a thin film at 40-80°C. The SAXS curves of mixed niobia-hybrid silica sols were dominated by the electron density contrast between sol particles and surrounding solvent. As the solvent evaporated and the sol particles approached each other, a correlation peak emerged. Since TEM microscopy revealed the absence of mesopores, the correlation peak was caused by a heterogeneous system of electron-rich regions and electron poor regions. The regions were assigned to small clusters that are rich in niobium and which are dispersed in a matrix that mainly consisted of hybrid silica. The correlation peak was associated with the typical distances between the electron dense clusters and corresponded with distances in real space of 1-3 nm. A relationship between the prehydrolysis time of the silica precursor and the size of the niobia building blocks was observed. When 1,2-bis(triethoxysilyl)ethane was first hydrolyzed for 30 min before adding niobium penta-ethoxide, the niobia building blocks reached a radius of 0.4 nm. Simultaneous hydrolysis of the two precursors resulted in somewhat larger average building block radii of 0.5-0.6 nm. This study shows that acid-catalyzed sol-gel polymerization of mixed hybrid silica niobium alkoxides can be rationalized and optimized by monitoring the structural evolution using time-resolved SAXS., (Copyright © 2013 Elsevier Inc. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF