1. Non-Invasive Microwave Hyperthermia and Simultaneous Temperature Monitoring with a Single Theranostic Applicator .
- Author
-
Maenhout G, Markovic T, and Nauwelaers B
- Subjects
- Microwaves, Precision Medicine, Temperature, Hyperthermia, Induced, Thermometry
- Abstract
Cancer therapies are constantly evolving. Currently, heating tumor tissue is becoming more accessible as a stand-alone method or in combination with other therapies. Due to its multiple advantages over other heating mechanisms, microwave hyperthermia has recently gained a lot of traction. In this work, we present a complementary split-ring resonator that is simultaneously excited in two independent frequency bands. With a high-power signal, the applicator is excited and heats the tissue-under-test up to 50°C with an average heating rate of 0.72°C per second. Furthermore, we present a dielectric temperature control system using the same applicator for microwave hyperthermia applications, which currently still requires an additional thermometry system. By exciting the applicator with a low-power signal, we can constantly monitor its resonant frequency. This resonant frequency depends on the tissue properties, which in turn are temperature-dependent. In the temperature range from 20-50°C, a positive correlation between the temperature and resonant frequency was established.Clinical relevance - Exploiting the dual-band behavior of the complementary split-ring resonator to heat the tissue-under-test while dielectrically monitoring its temperature, creates new possibilities towards a theranostic, non-invasive microwave hyperthermia applicator.
- Published
- 2021
- Full Text
- View/download PDF