1. Lightweight design of lattice structure of boron steel prepared by selective laser melting
- Author
-
Qi Zheng, Hong sheng Chen, Jun Zhou, Wen xian Wang, Liu wei Zheng, and San xiao Xi
- Subjects
Selective laser melting (SLM) ,Triply periodic minimal surfaces (TPMS ,Energy absorption ,Surface morphology ,Deformation behavior ,Mining engineering. Metallurgy ,TN1-997 - Abstract
Three-cycle minimum surface structures show excellent lightweight and energy absorption capabilities, and additive manufacturing techniques provide a unique degree of freedom for lattice structure design. Therefore, in this study, three-period minimum surface (TPMS) structures of Schwarz-P boron steel alloys were prepared by Selective Laser Melting (SLM) technique. By investigating the effect of lattice structure design, we have analyzed the deformation behavior, mechanical properties and energy absorption capacity under compression. In addition, tensile properties and fracture morphology were analyzed to gain insight into the performance characteristics of these structures, and the effect of structural design on hardness was explored. The results of the study show that the structural design has a small effect on the microstructure and hardness. Under compressive loading, the P (0.5 1) structure exhibits a uniform deformation behavior, while the other four structures show a crushing deformation pattern. In particular, the P (0.5 1) structure exhibits excellent compressive performance, with an energy absorption work per unit mass as high as 296.2 J/mm^3, and its stiffness reaches 1627 MPa. Meanwhile, the P (0.35 1) structure exhibits excellent tensile performance with the tensile strength of 687 MPa. The morphological analysis of the tensile fracture reveals that the fracture mainly occurs in the strut nodes, and it mainly exhibits ductile tensile fracture.
- Published
- 2024
- Full Text
- View/download PDF