1. In vitro examination of Piezo1-TRPV4 dynamics: implications for placental endothelial function in normal and preeclamptic pregnancies.
- Author
-
Allerkamp HH, Bondarenko AI, Tawfik I, Kamali-Simsek N, Horvat Mercnik M, Madreiter-Sokolowski CT, and Wadsack C
- Subjects
- Humans, Female, Pregnancy, Mechanotransduction, Cellular, Phosphorylation, Adult, Cells, Cultured, Calcium metabolism, TRPV Cation Channels metabolism, TRPV Cation Channels genetics, Pre-Eclampsia metabolism, Pre-Eclampsia genetics, Ion Channels metabolism, Ion Channels genetics, Placenta metabolism, Endothelial Cells metabolism, Nitric Oxide Synthase Type III metabolism, Nitric Oxide Synthase Type III genetics
- Abstract
Mechanosensation is essential for endothelial cell (EC) function, which is compromised in early-onset preeclampsia (EPE), impacting offspring health. The ion channels Piezo-type mechanosensitive ion channel component 1 (Piezo1) and transient receptor potential cation channel subfamily V member 4 (TRPV4) are coregulated mechanosensors in ECs. Current evidence suggests that both channels could mediate aberrant placental endothelial function in EPE. Using isolated fetoplacental ECs (fpECs) from early control (EC) and EPE pregnancies, we show functional coexpression of both channels and that Ca
2+ influx and membrane depolarization in response to chemical channel activation is reduced in EPE fpECs. Downstream of channel activation, Piezo1 alone can induce phosphorylation of endothelial nitric oxide synthase (eNOS) in fpECs, while combined activation of Piezo1 and TRPV4 only affects eNOS phosphorylation in EPE fpECs. Additionally, combined activation reduces the barrier integrity of fpECs and has a stronger effect on EPE fpECs. This implies altered Piezo1-TRPV4 coregulation in EPE. Mechanistically, we suggest this to be driven by changes in the arachidonic acid metabolism in EPE fpECs as identified by RNA sequencing. Targeting of Piezo1 and TRPV4 might hold potential for EPE treatment options in the future. NEW & NOTEWORTHY This study shows Piezo-type mechanosensitive ion channel component 1 (Piezo1) and transient receptor potential cation channel subfamily V member 4 (TRPV4) coexpression and functionality within primary human fetoplacental endothelial cells (fpECs), mediating nitric oxide (NO) production and barrier integrity. In early-onset preeclampsia (EPE), fpEC channel functionality and coregulation are impaired, affecting Ca2+ signaling and endothelial barrier function. Combined channel activation significantly reduces endothelial barrier integrity and increases NO production in EPE. Changes in arachidonic acid metabolism are suggested as a key underlying factor mediating impaired channel functionality in EPE fpECs.- Published
- 2025
- Full Text
- View/download PDF