Warner EW, Van der Eecken K, Murtha AJ, Kwan EM, Herberts C, Sipola J, Ng SWS, Chen XE, Fonseca NM, Ritch E, Schönlau E, Bernales CQ, Donnellan G, Munzur AD, Parekh K, Beja K, Wong A, Verbeke S, Lumen N, Van Dorpe J, De Laere B, Annala M, Vandekerkhove G, Ost P, and Wyatt AW
De novo metastatic prostate cancer is highly aggressive, but the paucity of routinely collected tissue has hindered genomic stratification and precision oncology. Here, we leveraged a rare study of surgical intervention in 43 de novo metastatic prostate cancers to assess somatic genotypes across 607 synchronous primary and metastatic tissue regions plus circulating tumor DNA. Intra-prostate heterogeneity was pervasive and impacted clinically relevant genes, resulting in discordant genotypes between select primary restricted regions and synchronous metastases. Additional complexity was driven by polyclonal metastatic seeding from phylogenetically related primary populations. When simulating clinical practice relying on a single tissue region, genomic heterogeneity plus variable tumor fraction across samples caused inaccurate genotyping of dominant disease; however, pooling extracted DNA from multiple biopsy cores before sequencing can rescue misassigned somatic genotypes. Our results define the relationship between synchronous treatment-sensitive primary and metastatic lesions in men with de novo metastatic prostate cancer and provide a framework for implementing genomics-guided patient management., (© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.)