1. De novo transcriptome assembly and discovery of drought-responsive genes in white spruce (Picea glauca).
- Author
-
Ribeyre Z, Depardieu C, Prunier J, Pelletier G, Parent GJ, Mackay J, Droit A, Bousquet J, Nolet P, and Messier C
- Subjects
- Stress, Physiological genetics, Gene Expression Profiling, Plant Proteins genetics, Plant Proteins metabolism, Genes, Plant, Picea genetics, Droughts, Gene Expression Regulation, Plant, Transcriptome
- Abstract
Forests face an escalating threat from the increasing frequency of extreme drought events driven by climate change. To address this challenge, it is crucial to understand how widely distributed species of economic or ecological importance may respond to drought stress. In this study, we examined the transcriptome of white spruce (Picea glauca (Moench) Voss) to identify key genes and metabolic pathways involved in the species' response to water stress. We assembled a de novo transcriptome, performed differential gene expression analyses at four time points over 22 days during a controlled drought stress experiment involving 2-year-old plants and three genetically distinct clones, and conducted gene enrichment analyses. The transcriptome assembly and gene expression analysis identified a total of 33,287 transcripts corresponding to 18,934 annotated unique genes, including 4,425 genes that are uniquely responsive to drought. Many transcripts that had predicted functions associated with photosynthesis, cell wall organization, and water transport were down-regulated under drought conditions, while transcripts linked to abscisic acid response and defense response were up-regulated. Our study highlights a previously uncharacterized effect of drought stress on lipid metabolism genes in conifers and significant changes in the expression of several transcription factors, suggesting a regulatory response potentially linked to drought response or acclimation. Our research represents a fundamental step in unraveling the molecular mechanisms underlying short-term drought responses in white spruce seedlings. In addition, it provides a valuable source of new genetic data that could contribute to genetic selection strategies aimed at enhancing the drought resistance and resilience of white spruce to changing climates., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2025 Ribeyre et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2025
- Full Text
- View/download PDF