7 results on '"Towfek, S. K."'
Search Results
2. Potato Production Forecasting Based on Balance Dynamic Biruni Earth Radius Algorithm for Long Short-Term Memory Models
- Author
-
Towfek, S. K. and Alhussan, Amel Ali
- Published
- 2024
- Full Text
- View/download PDF
3. 5G Resource Allocation Using Feature Selection and Greylag Goose Optimization Algorithm.
- Author
-
Alhussan, Amel Ali and Towfek, S. K.
- Subjects
MACHINE learning ,ARTIFICIAL intelligence ,DIGITAL technology ,OPTIMIZATION algorithms ,WILCOXON signed-rank test ,BOOSTING algorithms - Abstract
In the contemporary world of highly efficient technological development, fifth-generation technology (5G) is seen as a vital step forward with theoretical maximum download speeds of up to twenty gigabits per second (Gbps). As far as the current implementations are concerned, they are at the level of slightly below 1 Gbps, but this allowed a great leap forward from fourth generation technology (4G), as well as enabling significantly reduced latency, making 5G an absolute necessity for applications such as gaming, virtual conferencing, and other interactive electronic processes. Prospects of this change are not limited to connectivity alone; it urges operators to refine their business strategies and offers users better and improved digital solutions. An essential factor is optimization and the application of artificial intelligence throughout the general arrangement of intricate and detailed 5G lines. Integrating Binary Greylag Goose Optimization (bGGO) to achieve a significant reduction in the feature set while maintaining or improving model performance, leading to more efficient and effective 5G network management, and Greylag Goose Optimization (GGO) increases the efficiency of the machine learning models. Thus, the model performs and yields more accurate results. This work proposes a new method to schedule the resources in the next generation, 5G, based on a feature selection using GGO and a regression model that is an ensemble of K-Nearest Neighbors (KNN), Gradient Boosting, and Extra Trees algorithms. The ensemble model shows better prediction performance with the coefficient of determination R squared value equal to. 99348. The proposed framework is supported by several Statistical analyses, such as the Wilcoxon signed-rank test. Some of the benefits of this study are the introduction of new efficient optimization algorithms, the selection of features and more reliable ensemble models which improve the efficiency of 5G technology. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. Enhancing Wireless Sensor Network Efficiency through Al-Biruni Earth Radius Optimization.
- Author
-
Alkanhel, Reem Ibrahim, Khafaga, Doaa Sami, Zaki, Ahmed Mohamed, Eid, Marwa M., Al-Mooneam, Abdyalaziz A., Ibrahim, Abdelhameed, and Towfek, S. K.
- Subjects
WIRELESS sensor networks ,PARTICLE swarm optimization ,SENSOR networks ,GENETIC algorithms ,BOX-Jenkins forecasting ,COMMUNICATION infrastructure - Abstract
The networks of wireless sensors provide the ground for a range of applications, including environmental monitoring and industrial operations. Ensuring the networks can overcome obstacles like power and communication reliability and sensor coverage is the crux of network optimization. Network infrastructure planning should be focused on increasing performance, and it should be affected by the detailed data about node distribution. This work recommends the creation of each sensor's specs and radius of influence based on a particular geographical location, which will contribute to better network planning and design. By using the ARIMA model for time series forecasting and the Al-Biruni Earth Radius algorithm for optimization, our approach bridges the gap between successive terrains while seeking the equilibrium between exploration and exploitation. Through implementing adaptive protocols according to varying environments and sensor constraints, our study aspires to improve overall network operation. We compare the Al-Biruni Earth Radius algorithm along with Gray Wolf Optimization, Particle Swarm Optimization, Genetic Algorithms, and Whale Optimization about performance on real-world problems. Being the most efficient in the optimization process, Biruni displays the lowest error rate at 0.00032. The two other statistical techniques, like ANOVA, are also useful in discovering the factors influencing the nature of sensor data and network-specific problems. Due to the multi-faceted support the comprehensive approach promotes, there is a chance to understand the dynamics that affect the optimization outcomes better so decisions about network design can be made. Through delivering better performance and reliability for various in-situ applications, this research leads to a fusion of time series forecasters and a customized optimizer algorithm. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
5. Optimizing Sustainable Inventory Management using An Improved Big Data Analytics Approach.
- Author
-
Villacis, Marcelo Y., Merlo, Oswaldo T., Rivero, Diego P., and Towfek, S. K.
- Subjects
BIG data ,INVENTORY control ,SUPPLY chains ,GAME theory ,SUPPLY chain management ,GOVERNMENT policy ,STATISTICS - Abstract
This study delves into optimizing sustainable inventory management practices through the integration of advanced data analytics methodologies. In response to the complex dynamics of modern supply chains, where inventory control significantly impacts sustainability goals, this research aims to address the intricate interplay between decentralized decision-making, government policies, and strategic choices within supply chain networks. Employing models such as Game Theory and Gated Recurrent Unit (GRU), alongside statistical analyses, our investigation explores the transformative potential of informed decision-making frameworks. Through a comprehensive evaluation of inventory data, including statistical analyses, visual representations, and model evaluations, we illuminate the nuanced relationships and dependencies prevalent within inventory control strategies. Our findings underscore the significance of data-driven decision-making in optimizing inventory practices, mitigating risks, and fostering sustainability within supply chains. The insights gleaned from this study advocate for the continued application of advanced data analytics to pave the way for resilient, environmentally conscious, and economically viable supply chain practices. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
6. Predictive Analytics and Machine Learning in Direct Marketing for Anticipating Bank Term Deposit Subscriptions.
- Author
-
Zaki, Ahmed Mohamed, Khodadadi, Nima, Hong Lim, Wei, and Towfek, S. K.
- Subjects
PREDICTION models ,DIRECT marketing ,MACHINE learning ,BANKING industry ,RANDOM forest algorithms - Abstract
Direct marketing strategies in the banking sector have undergone evolution with the integration of predictive analytics and machine learning techniques. The focus of this study is on the utilization of these technologies to foresee bank term deposit subscriptions. The methodology encompasses data exploration, visualization, and the implementation of machine learning models. Datasets from Kaggle are employed, relationships within the data are explored through crosstabulations and heat maps, and feature engineering and preprocessing techniques are applied. The study individually implements models such as SGD Classifier, k-nearest neighbor Classifier, and Random Forest Classifier. The results indicate that the best performance among the evaluated models was exhibited by the Random Forest Classifier, achieving an accuracy of 87.5%, a negative predictive value (NPV) of 92.9972%, and a positive predictive value (PPV) of 87.8307%. These findings provide valuable insights for banks seeking to optimize their marketing strategies within the dynamic landscape of the financial industry. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
7. Estimating best nanomaterial for energy harvesting through reinforcement learning DQN coupled with fuzzy PROMETHEE under road-based conditions.
- Author
-
Raju SK, Varadarajan GK, Alharbi AH, Kannan S, Khafaga DS, Sundaramoorthy RA, Eid MM, and Towfek SK
- Abstract
Energy harvesters based on nanomaterials are getting more and more popular, but on their way to commercial availability, some crucial issues still need to be solved. The objective of the study is to select an appropriate nanomaterial. Using features of the Reinforcement Deep Q-Network (DQN) in conjunction with Fuzzy PROMETHEE, the proposed model, we present in this work a hybrid fuzzy approach to selecting appropriate materials for a vehicle-environmental-hazardous substance (EHS) combination that operates in roadways and under traffic conditions. The DQN is able to accumulate useful experience of operating in a dynamic traffic environment, accordingly selecting materials that deliver the highest energy output but at the same time bring consideration to factors such as durability, cost, and environmental impact. Fuzzy PROMETHEE allows the participation of human experts during the decision-making process, going beyond the quantitative data typically learned by DQN through the inclusion of qualitative preferences. Instead, this hybrid method unites the strength of individual approaches, as a result providing highly resistant and adjustable material selection to real EHS. The result of the study pointed out materials that can give high energy efficiency with reference to years of service, price, and environmental effects. The proposed model provides 95% accuracy with a computational efficiency of 300 s, and the application of hypothesis and practical testing on the chosen materials showed the high efficiency of the selected materials to harvest energy under fluctuating traffic conditions and proved the concept of a hybrid approach in True Vehicle Environmental High-risk Substance scenarios., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.