The development of in vitro gametogenesis (IVG) in the mouse opened up unforeseen possibilities for assisted reproduction. The development of this technology to be used in cattle production could accelerate the rate of genetic selection by dramatically reducing the generation interval, while decreasing the environmental impact of livestock production as the need to grow animals in the process of genetic selection would be reduced or even eliminated. Although several steps of the process of IVG such as in vitro oocyte maturation and fertilization, and embryo production are already routinely performed in cattle, other steps of the system such as in vitro follicle and oocyte development are still rudimentary. The stable derivation of bovine pluripotent stem cells is the starting point without which IVG cannot be realized. However, producing a primordial germ cell and taking this cell through oogenesis and folliculogenesis in a dish will require a more detailed understanding of the milestones that need to be accomplished in vivo before they can be recapitulated in vitro. In particular, understanding the regulatory circuitry of germ cell specification in the embryo, the timing and events related to development of the germ cell program, and the factors necessary to make a competent egg, will need to be uncovered. Here, we review the process of IVG and provide a brief description of the current advances and bottlenecks related to in vitro oogenesis and folliculogenesis in cattle. Finally, we provide a brief comparison between mice and cows in this regard. Producing eggs and sperm in the laboratory is a novel technology that has the potential to reduce the impact of animal agriculture on our planet and accelerate the genetic improvement of cattle. However, there are many pieces of information that we still need to learn about how cows reproduce before we can take advantage of this technology. Recent scientific advances are helping fill these gaps and should lead us toward more efficient and sustainable agriculture. Image by Anna C. Denicol. This article belongs to the Collection: Proceedings of the Annual Conference of the International Embryo Technology Society, Fort Worth, TX, USA, 18–22 January 2025. [ABSTRACT FROM AUTHOR]