1. The origins of light-independent magnetoreception in humans
- Author
-
Takashi Shibata, Noriaki Hattori, Hisao Nishijo, Satoshi Kuroda, and Kaoru Takakusaki
- Subjects
geomagnetic field ,magnetoreception ,magnetotactic bacteria ,electromagnetic induction ,semicircular canals ,iron ,Neurosciences. Biological psychiatry. Neuropsychiatry ,RC321-571 - Abstract
The Earth’s abundance of iron has played a crucial role in both generating its geomagnetic field and contributing to the development of early life. In ancient oceans, iron ions, particularly around deep-sea hydrothermal vents, might have catalyzed the formation of macromolecules, leading to the emergence of life and the Last Universal Common Ancestor. Iron continued to influence catalysis, metabolism, and molecular evolution, resulting in the creation of magnetosome gene clusters in magnetotactic bacteria, which enabled these unicellular organisms to detect geomagnetic field. Although humans lack a clearly identified organ for geomagnetic sensing, many life forms have adapted to geomagnetic field—even in deep-sea environments—through mechanisms beyond the conventional five senses. Research indicates that zebrafish hindbrains are sensitive to magnetic fields, the semicircular canals of pigeons respond to weak potential changes through electromagnetic induction, and human brainwaves respond to magnetic fields in darkness. This suggests that the trigeminal brainstem nucleus and vestibular nuclei, which integrate multimodal magnetic information, might play a role in geomagnetic processing. From iron-based metabolic systems to magnetic sensing in neurons, the evolution of life reflects ongoing adaptation to geomagnetic field. However, since magnetite-activated, torque-based ion channels within cell membranes have not yet been identified, specialized sensory structures like the semicircular canals might still be necessary for detecting geomagnetic orientation. This mini-review explores the evolution of life from Earth’s formation to light-independent human magnetoreception, examining both the magnetite hypothesis and the electromagnetic induction hypothesis as potential mechanisms for human geomagnetic detection.
- Published
- 2024
- Full Text
- View/download PDF