1. Expression of Trichoderma spp. endochitinase gene improves red rot disease resistance in transgenic sugarcane.
- Author
-
Sharma AS, Kalia A, Sharma A, Sidhu MS, Sanghera GS, Chhabra G, Sharma M, Singh M, Patel E, Das P, Hazra S, Kaur A, Singla D, and Sandhu JS
- Subjects
- Plant Leaves microbiology, Plant Leaves genetics, Saccharum microbiology, Saccharum genetics, Disease Resistance genetics, Plants, Genetically Modified microbiology, Plants, Genetically Modified genetics, Plant Diseases microbiology, Plant Diseases genetics, Colletotrichum pathogenicity, Trichoderma genetics, Chitinases genetics, Chitinases metabolism
- Abstract
Sugarcane (Saccharum spp.)is an economically useful crop grown globally for sugar, ethanol and biofuel production. The crop is vulnerable to fungus Colletotrichum falcatum known to cause red rot disease. The pathogen hydrolyses stalk parenchyma cells where sucrose is accumulated resulting in upto 75% losses in sugar recovery. In this study, transgenic sugarcane having resistance against red rot was developed by introducing Trichoderma spp. endochitinase following Agrobacterium mediated transformation. The transgene introduction and expression in genetically modified plants were verified through qRT-PCR revealing upto 6-fold enhancement in endochitinase expression than non-transgenic plants. Hyperspectral Imaging of transgenic plants displayed altered leaf reflectance spectra and vegetative indices that were positively correlated with ransgene expression. The bioassay with virulent pathotypes of C. falcatumCF08 and CF13 known for epiphytotic occurrence resulted in identification of resistant plant Chit 3-13.The plants with higher reflectance also displayed improved disease resistance, implying their early classification into resistant/susceptible. The losses in sucrose content were minimized (up to 4-fold) in inoculated resistant plant Chit 3-13 as compared to susceptible non-transgenic plant, and a fewer pathogen hyphae were detected in vascular cells of the former through optical microscopy. The electron micrographs confirmed sucrose-filled stalk parenchyma cells in Chit 3-13; in contrast, cells of non-transgenic inoculated plant were depleted of sucrose. The active sites involved in cleaving 1-4 β-glycoside bonds of N-acetyl-d-glucosaminein the pathogen hyphal walls were detected through endochitinase protein structural modelling. The transgenic sugarcane is an important source for in trogressingred rot resistance in plant breeding programs., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Sharma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF