Han, Siwen, Zhang, Jingjing, Wang, Wenyu, Zhang, Siying, Qin, Zhe, and Pei, Haixia
Petal abscission affects the growth, development, and economic value of plants, but the mechanism of ethylene-ROS-induced petal abscission is not clear. Therefore, we treated roses with different treatments (MOCK, ETH, STS, and ETH + STS), and phenotypic characteristics of petal abscission, changed ratio of fresh weight, morphology of cells in AZ and the expression of RhSUC2 were analyzed. On this basis, we measured reactive oxygen species (ROS) content in petals and AZ cells of roses, and analyzed the expression levels of some genes related to ROS production and ROS scavenging. Ethylene promoted the petal abscission of rose through decreasing the fresh weight of the flower, promoting the stacking and stratification of AZ cells, and repressing the expression of RhSUC2. During this process, ethylene induced the ROS accumulation of AZ cells and petals mainly through increasing the expressions of some genes (RhRHS17, RhIDH1, RhIDH-III, RhERS, RhPBL32, RhFRS5, RhRAC5, RhRBOHD, RhRBOHC, and RhPLATZ9) related to ROS production and repressing those genes (RhCCR4, RhUBC30, RhSOD1, RhAPX6.1, and RhCATA) related to ROS scavenging. In summary, ROS and related regulatory factors involved in ethylene induced petal abscission in roses. [ABSTRACT FROM AUTHOR]