1. Reaching the target dose with one single 131 I-mIBG administration in high-risk neuroblastoma: The determinant impact of the primary tumour.
- Author
-
Fiz F, Cirone A, Righi S, Massollo M, Amoroso L, Bottoni G, Conte M, Gambaro M, Massone F, Orengo S, Bruzzone GS, Sorrentino S, Garaventa A, and Piccardo A
- Subjects
- Child, Female, Humans, Infant, Child, Preschool, Radiometry, Retrospective Studies, 3-Iodobenzylguanidine therapeutic use, Iodine Radioisotopes therapeutic use, Radiopharmaceuticals therapeutic use, Neuroblastoma pathology
- Abstract
Background:
131 I-metaiodobenzylguanidine (131 I-mIBG) effectiveness in children with metastasised neuroblastoma (NB) is linked to the effective dose absorbed by the target; a target of 4 Gy whole-body dose threshold has been proposed. Achieving this dose often requires administering131 I-mIBG twice back-to-back, which may cause haematological toxicity. In this study, we tried identifying the factors predicting the achievement of 4 Gy whole-body dose with a single radiopharmaceutical administration., Materials and Methods: Children affected by metastatic NB and treated with a high131 I-mIBG activity (>450 MBq (megabecquerel)/kg) were evaluated retrospectively. Kinetics measurements were carried out at multiple time points to estimate the whole-body dose, which was compared with clinical and activity-related parameters., Results: Seventeen children (12 females, median age 3 years, age range: 1.5-6.9 years) were included. Eleven of them still bore the primary tumour. The median whole-body dose was 2.88 Gy (range: 1.63-4.22 Gy). Children with a 'bulky' primary (>30 mL) received a higher whole-body dose than those with smaller or surgically removed primaries (3.42 ± 0.74 vs. 2.48 ± 0.65 Gy, respectively, p = .016). Conversely, the correlation between activity/kg and the whole-body dose was moderate (R: 0.42, p = .093). In the multivariate analysis, the volume of the primary tumour was the most relevant predictor of the whole-body dose (p = .002)., Conclusions: These data suggest that the presence of a bulky primary tumour can significantly prolong the131 I-mIBG biological half-life, effectively increasing the absorbed whole-body dose. This information could be used to model the administered activity, allowing to attain the target dose without needing a two-step radiopharmaceutical administration., (© 2023 Wiley Periodicals LLC.)- Published
- 2024
- Full Text
- View/download PDF