18,175 results on '"Nelson AT"'
Search Results
2. Search for gravitational waves emitted from SN 2023ixf
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Obergaulinger, M., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchikata, N., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the GW emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-5} M_{\odot} c^2$ and luminosity $4 \times 10^{-5} M_{\odot} c^2/\text{s}$ for a source emitting at 50 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as $1.04$, at frequencies above $1200$ Hz, surpassing results from SN 2019ejj., Comment: Main paper: 6 pages, 4 figures and 1 table. Total with appendices: 20 pages, 4 figures, and 1 table
- Published
- 2024
3. A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Azrad, D., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R. ., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghonge, S., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Ho, W. C. G., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs., Comment: 15 pages of text including references, 4 figures, 5 tables
- Published
- 2024
4. Surveyed Preservice Teachers Reveal Skills Acquired from 1:1 Environment
- Author
-
Judy Ann Henning, Bryan Artman, Rebecca Nelson, Jordan Dille, and Chelsea Feusner
- Abstract
Are high school students ready for their postgraduate education or a career that may not have been invented yet? As teachers focus on career prep and the necessary future-ready skills in the classroom, teachers are using technology to hone skills necessary for students' future success. Success in higher education or career pursuits requires students to develop a combination of technology through student-centered, project-based learning around the 4Cs (critical thinking/problem solving, communication, collaboration, and creativity/innovation). The literature on technology skills and 4C skills has historically focused on one set of skills or the other in isolation. This research addresses this gap in the literature by comparing the acquisition of the two skill sets to each other in the same (1:1 technology) environment. This is a mixed methods study using survey data collected from pre-service teachers in an education course. The study aims to understand what technology and 4C skills pre-service teachers who graduated from a 1:1 technology high school possess. The findings of this study showed that the respondents are more prepared and comfortable using their 4C skills than their technology skills. The potential implications of technology and 4C skills deficiencies and strengths on future teaching practices are discussed. technology) environment.
- Published
- 2024
5. Teacher Professional Development for a Future with Generative Artificial Intelligence -- An Integrative Literature Review
- Author
-
Anabela Brandão, Luís Pedro, and Nelson Zagalo
- Abstract
Artificial Intelligence (AI) has been part of every citizen's life for several years. Still, the emergence of generative AI (GenAI), accessible to all, has raised discussions about the ethical issues they raise, particularly in education. GenAI tools generate content according to user requests, but are students using these tools ethically and safely? Can teachers guide students in this use and use these tools in their teaching activities? This paper argues that teacher professional development (TPD) is an essential key trigger in adopting these emerging technologies. The paper will present an integrative literature review that discusses the components of TPD that may empower teachers to guide their students towards the ethical and safe use of GenAI. According to the literature review, one key component of TPD should be AI literacy, which involves understanding AI, its capabilities and limitations, and its potential benefits and drawbacks in education. Another essential component is hands-on activities that engage teachers, their peers, and students in actively using these tools during the training process. The paper will discuss the advantages of working with GenAI tools and designing lesson plans to implement them critically in the classroom.
- Published
- 2024
6. Revenues and Expenditures for Public Elementary and Secondary Education: School Year 2021-22 (Fiscal Year 2022). First Look. NCES 2024-301
- Author
-
National Center for Education Statistics (NCES) (ED/IES), US Census Bureau, Stephen Q. Cornman, Shannon Doyle, Clara Moore, Jeremy Phillips, and Malia R. Nelson
- Abstract
This First Look report introduces new data for national and state-level public elementary and secondary revenues and expenditures for fiscal year (FY) 2022. Specifically, this report includes the following school finance data: (1) revenue and expenditure totals; (2) revenues by source; (3) expenditures by function, subfunction, and object; (4) current expenditures; (5) revenues and current expenditures per pupil; (6) expenditures from Title I funds; and (7) revenues and expenditures from COVID-19 Federal Assistance Funds. The expenditure functions include instruction, support services, food services, and enterprise operations. The support services function is further broken down into seven subfunctions: instructional staff support services, pupil support services, general administration, school administration, operations and maintenance, student transportation, other support services (such as business services). Objects reported within a function or subfunction include salaries and wages, employee benefits, purchased services, supplies, and equipment. The purpose of a First Look report is to introduce new data through the presentation of tables containing descriptive information. The selected findings chosen for this report demonstrate the range of information available when using NPEFS. They do not represent all of the data and are not meant to emphasize any particular issue. While the tables in this report include data for all NPEFS respondents, the selected findings are limited to the 50 states and the District of Columbia.
- Published
- 2024
7. Revenues and Expenditures for Public Elementary and Secondary Education: School Year 2021-22 (Fiscal Year 2022). First Look Report. NCES 2024-301
- Author
-
National Center for Education Statistics (NCES) (ED/IES), US Census Bureau, Stephen Q. Cornman, Shannon Doyle, Clara Moore, Jeremy Phillips, and Malia R. Nelson
- Abstract
This First Look report introduces new data for national and state-level public elementary and secondary revenues and expenditures for fiscal year (FY) 2022. Specifically, this report includes the following school finance data: (1) revenue and expenditure totals; (2) revenues by source; (3) expenditures by function, subfunction, and object; (4) current expenditures; (5) revenues and current expenditures per pupil; (6) expenditures from Title I funds; and (7) revenues and expenditures from COVID-19 Federal Assistance Funds. The expenditure functions include instruction, support services, food services, and enterprise operations. The support services function is further broken down into seven subfunctions: instructional staff support services, pupil support services, general administration, school administration, operations and maintenance, student transportation, other support services (such as business services).1 Objects reported within a function or subfunction include salaries and wages, employee benefits, purchased services, supplies, and equipment. The finance data used in this report are from the National Public Education Financial Survey (NPEFS), a component of the Common Core of Data (CCD). The CCD is one of NCES's primary survey programs on public elementary and secondary education in the United States. State education agencies (SEAs) in each of the 50 states, the District of Columbia, and the five other jurisdictions of American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, Puerto Rico, and the U.S. Virgin Islands report these data annually to NCES. The NPEFS instructions ask SEAs to report revenues and expenditures covering prekindergarten through high school public education in regular, special, and vocational schools; charter schools; and state-run education programs (such as special education schools or education programs for incarcerated youth).
- Published
- 2024
8. Early Educators' Reflections on the DC Early Childhood Educator Pay Equity Fund. Research Report
- Author
-
Urban Institute, Heather Sandstrom, Eve Mefferd, Laura Jimenez Parra, Victoria Nelson, Justin Doromal, Erica Greenberg, Elli Nikolopoulos, Rachel Lamb, and Alicia Gonzalez
- Abstract
Early childhood educators play an essential role in providing child care for families and learning and development supports for young children, yet they have long faced challenges due to low wages. Recognizing this, the District of Columbia (DC) introduced the Early Childhood Pay Equity Fund in 2022. This first-of-its-kind initiative aims to bridge the pay gap between early educators and teachers at public schools, addressing historical inequities and improving recruitment and retention efforts. This report provides an in-depth exploration of early educators' experiences with the Pay Equity Fund during its initial year of implementation. Drawing on data from surveys conducted in May 2023 and follow-up focus groups, the report offers insights into the transition from direct payments to an opt-in payment structure by employers in FY 2024. It covers educators' introduction to the Fund, their application and payment experiences, financial impacts, and perceived benefits for child care programs and the broader early childhood education field.
- Published
- 2024
9. Promotion of Academic Relationship Leadership Practice and Productivity of Lecturers in Public Universities in Delta and Edo States, Nigeria
- Author
-
Patience Okoro, Nelson Ejiro Akpotu, and Romina Ifeoma Asiyai
- Abstract
The study investigated the promotion of academic relationship leadership practice and productivity of lecturers in public universities in Delta and Edo states, Nigeria. Adopting an ex-post-facto design, it encompassed a population of 3,492 academic staff in four government-owned universities located in Delta and Edo States, Nigeria. A sample of 676 academic staff was selected through stratified random sampling techniques. The primary data collection instrument was a questionnaire with a high reliability coefficient of 0.97 achieved through the split-half method. The data obtained from the questionnaire were analyzed using correlation analysis. The findings revealed the existence of a positive and significant relationship between academic relationship leadership practice and the productivity of lecturers. Based on this result, the study recommended that academic leaders should create a friendly and warm environment that will engender and enhance the promotion of academic relationships to positively affect the productivity of academics.
- Published
- 2024
10. The Controlled Four-Parameter Method for Cross-Assignment of Directional Wave Systems
- Author
-
Santos, Andre Luiz Cordeiro dos, Santos, Felipe Marques dos, Violante-Carvalho, Nelson, Carvalho, Luiz Mariano, and Venceslau, Helder Manoel
- Subjects
Physics - Atmospheric and Oceanic Physics - Abstract
Cross-assignment of directional wave spectra is a critical task in wave data assimilation. Traditionally, most methods rely on two-parameter spectral distances or energy ranking approaches, which often fail to account for the complexities of the wave field, leading to inaccuracies. To address these limitations, we propose the Controlled Four-Parameter Method (C4PM), which independently considers four integrated wave parameters. This method enhances the accuracy and robustness of cross-assignment by offering flexibility in assigning weights and controls to each wave parameter. We compare C4PM with a two-parameter spectral distance method using data from two buoys moored 13 km apart in deep water. Although both methods produce negligible bias and high correlation, C4PM demonstrates superior performance by preventing the occurrence of outliers and achieving a lower root mean square error across all parameters. The negligible computational cost and customization make C4PM a valuable tool for wave data assimilation, improving the reliability of forecasts and model validations.
- Published
- 2024
11. Highest weight vectors, shifted topological recursion and quantum curves
- Author
-
Belliard, Raphaël, Bouchard, Vincent, Kramer, Reinier, and Nelson, Tanner
- Subjects
Mathematical Physics ,High Energy Physics - Theory ,Mathematics - Quantum Algebra ,Mathematics - Representation Theory ,14H81, 17B69, 81R10, 30F30, 34E20, 81S10 - Abstract
We extend the theory of topological recursion by considering Airy structures whose partition functions are highest weight vectors of particular $\mathcal{W}$-algebra representations. Such highest weight vectors arise as partition functions of Airy structures only under certain conditions on the representations. In the spectral curve formulation of topological recursion, we show that this generalization amounts to adding specific terms to the correlators $ \omega_{g,1}$, which leads to a ``shifted topological recursion'' formula. We then prove that the wave-functions constructed from this shifted version of topological recursion are WKB solutions of families of quantizations of the spectral curve with $ \hbar$-dependent terms. In the reverse direction, starting from an $\hbar$-connection, we find that it is of topological type if the exact same conditions that we found for the Airy structures are satisfied. When this happens, the resulting shifted loop equations can be solved by the shifted topological recursion obtained earlier., Comment: 49 pages, 1 figure
- Published
- 2024
12. MOPI-HFRS: A Multi-objective Personalized Health-aware Food Recommendation System with LLM-enhanced Interpretation
- Author
-
Zhang, Zheyuan, Wang, Zehong, Ma, Tianyi, Taneja, Varun Sameer, Nelson, Sofia, Le, Nhi Ha Lan, Murugesan, Keerthiram, Ju, Mingxuan, Chawla, Nitesh V, Zhang, Chuxu, and Ye, Yanfang
- Subjects
Computer Science - Information Retrieval ,Computer Science - Machine Learning - Abstract
The prevalence of unhealthy eating habits has become an increasingly concerning issue in the United States. However, major food recommendation platforms (e.g., Yelp) continue to prioritize users' dietary preferences over the healthiness of their choices. Although efforts have been made to develop health-aware food recommendation systems, the personalization of such systems based on users' specific health conditions remains under-explored. In addition, few research focus on the interpretability of these systems, which hinders users from assessing the reliability of recommendations and impedes the practical deployment of these systems. In response to this gap, we first establish two large-scale personalized health-aware food recommendation benchmarks at the first attempt. We then develop a novel framework, Multi-Objective Personalized Interpretable Health-aware Food Recommendation System (MOPI-HFRS), which provides food recommendations by jointly optimizing the three objectives: user preference, personalized healthiness and nutritional diversity, along with an large language model (LLM)-enhanced reasoning module to promote healthy dietary knowledge through the interpretation of recommended results. Specifically, this holistic graph learning framework first utilizes two structure learning and a structure pooling modules to leverage both descriptive features and health data. Then it employs Pareto optimization to achieve designed multi-facet objectives. Finally, to further promote the healthy dietary knowledge and awareness, we exploit an LLM by utilizing knowledge-infusion, prompting the LLMs with knowledge obtained from the recommendation model for interpretation.
- Published
- 2024
13. Open-Loop and Model Predictive Control for Electric Vehicle Charging to Manage Excess Renewable Energy Supply in Texas
- Author
-
Nelson, Kelsey M., Golan, Maureen S., Bartos, Matthew D., and Mohammadi, Javad
- Subjects
Electrical Engineering and Systems Science - Systems and Control - Abstract
Modern power grids are evolving to become more interconnected, include more electric vehicles (EVs), and utilize more renewable energy sources (RES). Increased interconnectivity provides an opportunity to manage EVs and RES by using price signaling to shift EV loads towards periods of high RES output. This work uses ERCOT's 2035 RES installation plans and projections for Texas's EV fleet to examine and compare how both open-loop control and model predictive control (MPC) schemes can leverage time varying rates for EV charging to utilize excess RES supply that may otherwise be underutilized in a highly weather-dependent grid. The results show that while open-loop control increases RES usage, MPC increases RES usage even further by responding to RES outputs that differ from forecasts due to the inherent uncertainty of weather predictions. If MPC is used with time steps that are too frequent, however, difficulties arise; EV owners may find it too onerous to keep up with changing price structures, and frequent over-corrections to charging profiles can lead to a ``rebound peak" phenomenon. Therefore, control schemes should balance maximizing RES usage with ensuring customer participation.
- Published
- 2024
14. Data-Driven Assessment of Vehicle-to-Grid Capabilities in Supporting Grid During Emergencies: Case Study of Travis County, TX
- Author
-
Nelson, Kelsey and Mohammadi, Javad
- Subjects
Electrical Engineering and Systems Science - Systems and Control - Abstract
As extreme weather events become more common and threaten power grids, the continuing adoption of electric vehicles (EVs) introduces a growing opportunity for their use as a distributed energy storage resource. This energy storage can be used as backup generation through the use of vehicle-to-grid (V2G) technology, where electricity is sent back from EV batteries to the grid. With enough participation from EV owners, V2G can mitigate outages during grid emergencies. In order to investigate a practical application of V2G, this study leverages a vast array of real-world data, such as survey results on V2G participation willingness, historical outage data within ERCOT, current EV registrations, and demographic data. This data informs realistic emergency grid scenarios with V2G support using a synthetic transmission grid for Travis County. The results find that as EV ownership rises in the coming years, the simultaneous facilitation of bidirectional charging availability would allow for V2G to play a substantial role in preventing involuntary load shed as a result of emergencies like winter storms.
- Published
- 2024
15. JWST UNCOVERs the Optical Size - Stellar Mass Relation at $4<z<8$: Rapid Growth in the Sizes of Low Mass Galaxies in the First Billion Years of the Universe
- Author
-
Miller, Tim B., Suess, Katherine A., Setton, David J., Price, Sedona H., Labbe, Ivo, Bezanson, Rachel, Brammer, Gabriel, Cutler, Sam E., Furtak, Lukas J., Leja, Joel, Pan, Richard, Wang, Bingjie, Weaver, John R., Whitaker, Katherine E., Dayal, Pratika, de Graaff, Anna, Feldmann, Robert, Greene, Jenny E., Fujimoto, S., Maseda, Michael V., Nanayakkara, Themiya, Nelson, Erica J., van Dokkum, Pieter, and Zitrin, Adi
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We study the rest-frame optical and ultraviolet morphology of galaxies in the first billion years of the Universe. Using JWST data from the UNCOVER and MegaScience surveys targeting the lensing cluster Abell 2744 we present multi-band morphological measurements for a sample of 995 galaxies selected using 20-band NIRCam photometry and 35 using NIRSpec Prism spectroscopy over the redshift range of $4
- Published
- 2024
16. Interplay of Quasi-Quantum Hall Effect and Coulomb Disorder in Semimetals
- Author
-
Leahy, Ian A., Rice, Anthony D., Nelson, Jocienne N., Ness, Herve, van Schilfgaarde, Mark, Pan, Wei, and Alberi, Kirstin
- Subjects
Condensed Matter - Materials Science - Abstract
Low carrier densities in topological semimetals (TSMs) enable the exploration of novel magnetotransport in the quantum limit (QL). Reports consistent with 3D quasi-quantum Hall effect (QQHE) have repositioned TSMs as promising platforms for exploring 3D quantum Hall transport, but the lack of tunability in the Fermi has thus far limited the ability to control the QQHE signal. Here, we tune the defect concentrations in the Dirac semimetal Cd${}_3$As${}_2$ to achieve ultra-low carrier concentrations at 2 K around $2.9\times10^{16}$cm${}^{-3}$, giving way to QQHE signal at modest fields under 10 T. At low carrier densities, where QQHE is most accessible, we find that a zero resistivity state is obscured by a carrier density dependent background originating from Coulomb disorder from charged point defects. Our results highlight the interplay between QQHE and Coulomb disorder scattering, demonstrating that clear observation of QQHE in TSMs intricately depends on Fermi level. Predicted in TSMs a decade ago, we find that Coulomb disorder is an essential ingredient for understanding the magnetoresistivity for a spectrum of Fermi levels, experimentally anchoring the important roles of defects and charged disorder in TSM applications. We discuss future constraints and opportunities in exploring 3D QHE in TSMs.
- Published
- 2024
17. First search for atmospheric millicharged particles with the LUX-ZEPLIN experiment
- Author
-
Aalbers, J., Akerib, D. S., Musalhi, A. K. Al, Alder, F., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Baker, A., Balashov, S., Bang, J., Bargemann, J. W., Barillier, E. E., Bauer, D., Beattie, K., Benson, T., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Bishop, E., Blockinger, G. M., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Buuck, M., Carmona-Benitez, M. C., Carter, M., Chawla, A., Chen, H., Cherwinka, J. J., Chin, Y. T., Chott, N. I., Converse, M. V., Coronel, R., Cottle, A., Cox, G., Curran, D., Dahl, C. E., Darlington, I., Dave, S., David, A., Delgaudio, J., Dey, S., de Viveiros, L., Di Felice, L., Ding, C., Dobson, J. E. Y., Druszkiewicz, E., Dubey, S., Eriksen, S. R., Fan, A., Fayer, S., Fearon, N. M., Fieldhouse, N., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T. M. A., Gaitskell, R. J., Geffre, A., Genovesi, J., Ghag, C., Ghosh, A., Gibbons, R., Gokhale, S., Green, J., van der Grinten, M. G. D., Haiston, J. J., Hall, C. R., Hall, T. J., Han, S., Hartigan-O'Connor, E., Haselschwardt, S. J., Hernandez, M. A., Hertel, S. A., Heuermann, G., Homenides, G. J., Horn, M., Huang, D. Q., Hunt, D., Jacquet, E., James, R. S., Johnson, J., Kaboth, A. C., Kamaha, A. C., K., Meghna K., Khaitan, D., Khazov, A., Khurana, I., Kim, J., Kim, Y. D., Kingston, J., Kirk, R., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Kudryavtsev, V. A., Lawes, C., Leonard, D. S., Lesko, K. T., Levy, C., Lin, J., Lindote, A., Lippincott, W. H., Lopes, M. I., Lorenzon, W., Lu, C., Luitz, S., Majewski, P. A., Manalaysay, A., Mannino, R. L., Maupin, C., McCarthy, M. E., McDowell, G., McKinsey, D. N., McLaughlin, J., McLaughlin, J. B., McMonigle, R., Mizrachi, E., Monte, A., Monzani, M. E., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murdy, M., Murphy, A. St. J., Naylor, A., Nelson, H. N., Neves, F., Nguyen, A., O'Brien, C. L., Olcina, I., Oliver-Mallory, K. C., Orpwood, J., Oyulmaz, K. Y, Palladino, K. J., Palmer, J., Pannifer, N. J., Parveen, N., Patton, S. J., Penning, B., Pereira, G., Perry, E., Pershing, T., Piepke, A., Qie, Y., Reichenbacher, J., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Ritchey, E., Riyat, H. S., Rosero, R., Rushton, T., Rynders, D., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Sehr, G., Shafer, B., Shaw, S., Shutt, T., Silk, J. J., Silva, C., Sinev, G., Siniscalco, J., Smith, R., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Szydagis, M., Tiedt, D. R., Timalsina, M., Tong, Z., Tovey, D. R., Tranter, J., Trask, M., Tripathi, M., Usón, A., Vacheret, A., Vaitkus, A. C., Valentino, O., Velan, V., Wang, A., Wang, J. J., Wang, Y., Watson, J. R., Weeldreyer, L., Whitis, T. J., Wild, K., Williams, M., Wisniewski, W. J., Wolf, L., Wolfs, F. L. H., Woodford, S., Woodward, D., Wright, C. J., Xia, Q., Xu, J., Xu, Y., Yeh, M., Yeum, D., Zha, W., and Zweig, E. A.
- Subjects
High Energy Physics - Experiment - Abstract
We report on a search for millicharged particles (mCPs) produced in cosmic ray proton atmospheric interactions using data collected during the first science run of the LUX-ZEPLIN experiment. The mCPs produced by two processes -- meson decay and proton bremsstrahlung -- are considered in this study. This search utilized a novel signature unique to liquid xenon (LXe) time projection chambers (TPCs), allowing sensitivity to mCPs with masses ranging from 10 to 1000 MeV/c$^2$ and fractional charges between 0.001 and 0.02 of the electron charge e. With an exposure of 60 live days and a 5.5 tonne fiducial mass, we observed no significant excess over background. This represents the first experimental search for atmospheric mCPs and the first search for mCPs using an underground LXe experiment.
- Published
- 2024
18. An unambiguous AGN and a Balmer break in an Ultraluminous Little Red Dot at z=4.47 from Ultradeep UNCOVER and All the Little Things Spectroscopy
- Author
-
Labbe, Ivo, Greene, Jenny E., Matthee, Jorryt, Treiber, Helena, Kokorev, Vasily, Miller, Tim B., Kramarenko, Ivan, Setton, David J., Ma, Yilun, Goulding, Andy D., Bezanson, Rachel, Naidu, Rohan P., Williams, Christina C., Atek, Hakim, Brammer, Gabriel, Cutler, Sam E., Chemerynska, Iryna, Cloonan, Aidan P., Dayal, Pratika, de Graaff, Anna, Fudamoto, Yoshinobu, Fujimoto, Seiji, Furtak, Lukas J., Glazebrook, Karl, Heintz, Kasper E., Leja, Joel, Marchesini, Danilo, Nanayakkara, Themiya, Nelson, Erica J., Oesch, Pascal A., Pan, Richard, Price, Sedona H., Shivaei, Irene, Sobral, David, Suess, Katherine A., van Dokkum, Pieter, Wang, Bingjie, Weaver, John R., Whitaker, Katherine E., and Zitrin, Adi
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present a detailed exploration of the most optically-luminous Little Red Dot ($L_{H\alpha}=10^{44}$erg/s, $L_V=10^{45}$erg/s, F444W=22AB) found to date. Located in the Abell 2744 field, source A744-45924 was observed by NIRSpec/PRISM with ultradeep spectroscopy reaching SNR$\sim$100pix$^{-1}$, high-resolution 3-4 micron NIRCam/Grism spectroscopy, and NIRCam Medium Band imaging. The NIRCam spectra reveal high rest-frame EW $W_{H\alpha,0,broad}>800$\r{A}, broad H$\alpha$ emission (FWHM$\sim$4500 km/s), on top of narrow, complex absorption. NIRSpec data show exceptionally strong rest-frame UV to NIR Fe II emission ($W_{FeII-UV,0}\sim$340\r{A}), N IV]$\lambda\lambda$1483,1486 and N III]$\lambda$1750, and broad NIR O I $\lambda$8446 emission. The spectra unambiguously demonstrate a broad-line region associated with an inferred $M_{BH}\sim10^9M_\odot$ supermassive black hole embedded in dense gas, which might explain a non-detection in ultradeep Chandra X-ray data (>$10\times$ underluminous relative to broad $L_{H\alpha}$). Strong UV Nitrogen lines suggest supersolar N/O ratios due to rapid star formation or intense radiation near the AGN. The continuum shows a clear Balmer break at rest-frame 3650\r{A}, which cannot be accounted for by an AGN power-law alone. A stellar population model produces an excellent fit with a reddened Balmer break and implying a massive ($M_*\sim8\times10^{10}M_\odot$), old $\sim$500 Myr, compact stellar core, among the densest stellar systems known ($\rho\sim3\times10^6M_\odot$/pc$^2$ for $R_{e,opt}=70\pm10$ pc), and AGN emission with extreme intrinsic EW $W_{H\alpha,0}\gg$1000\r{A}. However, although high $M_*$ and $M_{BH}$ are supported by evidence of an overdensity containing 40 galaxies at $z=4.41-4.51$, deep high-resolution spectroscopy is required to confirm stellar absorption and rule out that dense gas around the AGN causes the Balmer break instead., Comment: 28 pages,10 figures, submitted to ApJ
- Published
- 2024
19. votess: A multi-target, GPU-capable, parallel Voronoi tessellator
- Author
-
Singh, Samridh Dev, Byrohl, Chris, and Nelson, Dylan
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Computer Science - Distributed, Parallel, and Cluster Computing - Abstract
votess is a library for computing parallel 3D Voronoi tessellations on heterogeneous platforms, from CPUs and GPUs, to future accelerator architectures. To do so, it leverages the SYCL abstraction layer to achieve portability and performance across these architectures. The core library is an implementation of a Voronoi cell-by-cell computation algorithm, producing the geometry of the cells and their neighbor connectivity information, rather than a full combinatorial mesh data structure. This simplifies the Voronoi tessellation and makes it more suitable to data parallel architectures than alternatives such as sequential insertion or the Bowyer-Watson algorithm. The library demonstrates significant performance improvements over established single-threaded programs and serves as a foundational tool for performance-critical applications, such as on-the-fly computations in hydrodynamical codes., Comment: submitted to Journal of Open Source Software; open-source development at https://github.com/samridh-dev/votess.git; Comment: fixed author typo
- Published
- 2024
20. Photospheric Swirls in a Quiet-Sun Region
- Author
-
Xie, Quan, Liu, Jiajia, Nelson, Chris J., Erdélyi, Robert, and Wang, Yuming
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
Swirl-shaped flow structures have been observed throughout the solar atmosphere, in both emission and absorption, at different altitudes and locations, and are believed to be associated with magnetic structures. However, the distribution patterns of such swirls, especially their spatial positions, remain unclear. Using the Automated Swirl Detection Algorithm (ASDA), we identified swirls from the high-resolution photospheric observations, centered on Fe I 630.25 nm, of a quiet region near the Sun's central meridian by the Swedish 1-m Solar Telescope. Through a detailed study of the locations of the detected small-scale swirls with an average radius of $\sim$300 km, we found that most of them are located in lanes between mesogranules (which have an average diameter of $\sim$5.4 Mm) instead of the commonly believed intergranular lanes. The squared rotation, expansion/contraction, vector speeds, and proxy kinetic energy are all found to follow Gaussian distributions. Their rotation speed, expansion/contraction speed, and circulation are positively correlated with their radius. These results suggest that photospheric swirls at different scales and locations across the observational 56.5" $\times$ 57.5" field-of-view (FOV) could share the same triggering mechanism at preferred spatial and energy scales. A comparison with previous work suggests that the number of photospheric swirls is positively correlated with the number of local magnetic concentrations, stressing the close relation between swirls and local magnetic concentrations:the number of swirls should positively correlate with the number and strength of local magnetic concentrations., Comment: Accepted for publication in the Astrophysical Journal. 13 pages, 10 figures, 1 table
- Published
- 2024
21. Liquid Crystal Ground States on Cones with Anti-Twist Boundary Conditions
- Author
-
Long, Cheng and Nelson, David R.
- Subjects
Condensed Matter - Soft Condensed Matter - Abstract
Geometry and topology play a fundamental role in determining pattern formation on 2D surfaces in condensed matter physics. For example, local positive Gaussian curvature of a 2D surface attracts positive topological defects in a liquid crystal phase confined to the curved surface while repelling negative topological defects. Although the cone geometry is flat on the flanks, the concentrated Gaussian curvature at the cone apex geometrically frustrates liquid crystal orientational fields arbitrarily far away. The apex acts as an unquantized pseudo-defect interacting with the topological defects on the flank. By exploiting the conformal mapping methods of F. Vafa et al., we explore a simple theoretical framework to understand the ground states of liquid crystals with $p$-fold rotational symmetry on cones, and uncover important finite size effects for the ground states with boundary conditions that confine both plus and minus defects to the cone flanks. By combining the theory and simulations, we present new results for liquid crystal ground states on cones with anti-twist boundary conditions at the cone base, which enforce a total topological charge of $-1$. We find that additional quantized negative defects are created on the flank as the cone apex becomes sharper via a defect unbinding process, such that an equivalent number of quantized positive defects become trapped at the apex, thus partially screening the apex charge, whose magnitude is a continuous function of cone angle.
- Published
- 2024
22. Grounded Language Design for Lightweight Diagramming for Formal Methods
- Author
-
Prasad, Siddhartha, Greenman, Ben, Nelson, Tim, and Krishnamurthi, Shriram
- Subjects
Computer Science - Computation and Language ,Computer Science - Programming Languages ,D.3.1 ,D.2.4 ,D.3.2 - Abstract
Model finding, as embodied by SAT solvers and similar tools, is used widely, both in embedding settings and as a tool in its own right. For instance, tools like Alloy target SAT to enable users to incrementally define, explore, verify, and diagnose sophisticated specifications for a large number of complex systems. These tools critically include a visualizer that lets users graphically explore these generated models. As we show, however, default visualizers, which know nothing about the domain, are unhelpful and even actively violate presentational and cognitive principles. At the other extreme, full-blown visualizations require significant effort as well as knowledge a specifier might not possess; they can also exhibit bad failure modes (including silent failure). Instead, we need a language to capture essential domain information for lightweight diagramming. We ground our language design in both the cognitive science literature on diagrams and on a large number of example custom visualizations. This identifies the key elements of lightweight diagrams. We distill these into a small set of orthogonal primitives. We extend an Alloy-like tool to support these primitives. We evaluate the effectiveness of the produced diagrams, finding them good for reasoning. We then compare this against many other drawing languages and tools to show that this work defines a new niche that is lightweight, effective, and driven by sound principles.
- Published
- 2024
23. Moire magnetism in CrBr3 multilayers emerging from differential strain
- Author
-
Yao, Fengrui, Rossi, Dario, Gabrovski, Ivo A., Multian, Volodymyr, Hua, Nelson, Watanabe, Kenji, Taniguchi, Takashi, Gibertini, Marco, Gutierrez-Lezama, Ignacio, Rademaker, Louk, and Morpurgo, Alberto F.
- Subjects
Condensed Matter - Materials Science - Abstract
Interfaces between twisted 2D materials host a wealth of physical phenomena originating from the long-scale periodicity associated with the resulting moire structure. Besides twisting, an alternative route to create structures with comparably long or even longer periodicities is inducing a differential strain between adjacent layers in a van der Waals (vdW) material. Despite recent theoretical efforts analyzing its benefits, this route has not yet been implemented experimentally. Here we report evidence for the simultaneous presence of ferromagnetic and antiferromagnetic regions in CrBr3 _a hallmark of moire magnetism_ from the observation of an unexpected magnetoconductance in CrBr3 tunnel barriers with ferromagnetic Fe3GeTe2 and graphene electrodes. The observed magnetoconductance evolves with temperature and magnetic field as the magnetoconductance measured in small angle CrBr3 twisted junctions, in which moire magnetism occurs. Consistent with Raman measurements and theoretical modeling, we attribute the phenomenon to the presence of a differential strain in the CrBr3 multilayer, which locally modifies the stacking and the interlayer exchange between adjacent CrBr3 layers, resulting in spatially modulated spin textures. Our conclusions indicate that inducing differential strain in vdW multilayers is a viable strategy to create moire-like superlattices, which in the future may offer in-situ continuous tunability even at low temperatures.
- Published
- 2024
- Full Text
- View/download PDF
24. Space Complexity of Minimum Cut Problems in Single-Pass Streams
- Author
-
Ding, Matthew, Garces, Alexandro, Li, Jason, Lin, Honghao, Nelson, Jelani, Shah, Vihan, and Woodruff, David P.
- Subjects
Computer Science - Data Structures and Algorithms - Abstract
We consider the problem of finding a minimum cut of a weighted graph presented as a single-pass stream. While graph sparsification in streams has been intensively studied, the specific application of finding minimum cuts in streams is less well-studied. To this end, we show upper and lower bounds on minimum cut problems in insertion-only streams for a variety of settings, including for both randomized and deterministic algorithms, for both arbitrary and random order streams, and for both approximate and exact algorithms. One of our main results is an $\widetilde{O}(n/\varepsilon)$ space algorithm with fast update time for approximating a spectral cut query with high probability on a stream given in an arbitrary order. Our result breaks the $\Omega(n/\varepsilon^2)$ space lower bound required of a sparsifier that approximates all cuts simultaneously. Using this result, we provide streaming algorithms with near optimal space of $\widetilde{O}(n/\varepsilon)$ for minimum cut and approximate all-pairs effective resistances, with matching space lower-bounds. The amortized update time of our algorithms is $\widetilde{O}(1)$, provided that the number of edges in the input graph is at least $(n/\varepsilon^2)^{1+o(1)}$. We also give a generic way of incorporating sketching into a recursive contraction algorithm to improve the post-processing time of our algorithms. In addition to these results, we give a random-order streaming algorithm that computes the {\it exact} minimum cut on a simple, unweighted graph using $\widetilde{O}(n)$ space. Finally, we give an $\Omega(n/\varepsilon^2)$ space lower bound for deterministic minimum cut algorithms which matches the best-known upper bound up to polylogarithmic factors., Comment: 25+3 pages, 2 figures. Accepted to ITCS 2025. v2: minor updates to author information
- Published
- 2024
25. Terahertz stimulated parametric downconversion of a magnon mode in an antiferromagnet
- Author
-
Zhang, Zhuquan, Chien, Yu-Che, Wong, Man Tou, Gao, Frank Y., Liu, Zi-Jie, Ma, Xiaoxuan, Cao, Shixun, Baldini, Edoardo, and Nelson, Keith A.
- Subjects
Condensed Matter - Materials Science - Abstract
In condensed matter systems, interactions between collective modes offer avenues for nonlinear coherent manipulation of coupled excitations and quantum phases. Antiferromagnets, with their inherently coupled magnon modes, provide a promising platform for nonlinear control of microscopic spin waves and macroscopic magnetization. However, nonlinear magnon-magnon interactions have been only partially elaborated, leaving key gaps in the prospects for potential ultrahigh-bandwidth magnonic signal processing. Here, we use a pair of intense terahertz pulses to sequentially excite two distinct coherent magnon modes in an antiferromagnet and find that the magnon mode with a lower frequency undergoes amplification when the higher-frequency mode is driven. We unveil the nonlinear excitation pathways of this stimulated parametric downconversion process by using polarization-selective two-dimensional terahertz spectroscopy. Our work provides fundamental insights into nonlinear magnonics in antiferromagnets, laying the groundwork for forthcoming spintronic and magnonic devices based on nonlinear magnon-magnon interactions.
- Published
- 2024
26. The 2024 Motile Active Matter Roadmap
- Author
-
Gompper, Gerhard, Stone, Howard A., Kurzthaler, Christina, Saintillan, David, Peruani, Fernado, Fedosov, Dmitry A., Auth, Thorsten, Cottin-Bizonne, Cecile, Ybert, Christophe, Clement, Eric, Darnige, Thierry, Lindner, Anke, Goldstein, Raymond E., Liebchen, Benno, Binysh, Jack, Souslov, Anton, Isa, Lucio, di Leonardo, Roberto, Frangipane, Giacomo, Gu, Hongri, Nelson, Bradley J., Brauns, Fridtjof, Marchetti, M. Cristina, Cichos, Frank, Heuthe, Veit-Lorenz, Bechinger, Clemens, Korman, Amos, Feinerman, Ofer, Cavagna, Andrea, Giardina, Irene, Jeckel, Hannah, and Drescher, Knut
- Subjects
Condensed Matter - Soft Condensed Matter ,Physics - Biological Physics - Abstract
Activity and autonomous motion are fundamental aspects of many living and engineering systems. Here, the scale of biological agents covers a wide range, from nanomotors, cytoskeleton, and cells, to insects, fish, birds, and people. Inspired by biological active systems, various types of autonomous synthetic nano- and micromachines have been designed, which provide the basis for multifunctional, highly responsive, intelligent active materials. A major challenge for understanding and designing active matter is their inherent non-equilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Furthermore, interactions in ensembles of active agents are often non-additive and non-reciprocal. An important aspect of biological agents is their ability to sense the environment, process this information, and adjust their motion accordingly. It is an important goal for the engineering of micro-robotic systems to achieve similar functionality. With many fundamental properties of motile active matter now reasonably well understood and under control, the ground is prepared for the study of physical aspects and mechanisms of motion in complex environments, of the behavior of systems with new physical features like chirality, of the development of novel micromachines and microbots, of the emergent collective behavior and swarming of intelligent self-propelled particles, and of particular features of microbial systems. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter poses major challenges, which can only be addressed by a truly interdisciplinary effort involving scientists from biology, chemistry, ecology, engineering, mathematics, and physics.
- Published
- 2024
27. Advanced LIGO detector performance in the fourth observing run
- Author
-
Capote, E., Jia, W., Aritomi, N., Nakano, M., Xu, V., Abbott, R., Abouelfettouh, I., Adhikari, R. X., Ananyeva, A., Appert, S., Apple, S. K., Arai, K., Aston, S. M., Ball, M., Ballmer, S. W., Barker, D., Barsotti, L., Berger, B. K., Betzwieser, J., Bhattacharjee, D., Billingsley, G., Biscans, S., Blair, C. D., Bode, N., Bonilla, E., Bossilkov, V., Branch, A., Brooks, A. F., Brown, D. D., Bryant, J., Cahillane, C., Cao, H., Clara, F., Collins, J., Compton, C. M., Cottingham, R., Coyne, D. C., Crouch, R., Csizmazia, J., Cumming, A., Dartez, L. P., Davis, D., Demos, N., Dohmen, E., Driggers, J. C., Dwyer, S. E., Effler, A., Ejlli, A., Etzel, T., Evans, M., Feicht, J., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fuentes-Garcia, M., Fulda, P., Fyffe, M., Ganapathy, D., Gateley, B., Gayer, T., Giaime, J. A., Giardina, K. D., Glanzer, J., Goetz, E., Goetz, R., Goodwin-Jones, A. W., Gras, S., Gray, C., Griffith, D., Grote, H., Guidry, T., Gurs, J., Hall, E. D., Hanks, J., Hanson, J., Heintze, M. C., Helmling-Cornell, A. F., Holland, N. A., Hoyland, D., Huang, H. Y., Inoue, Y., James, A. L., Jamies, A., Jennings, A., Jones, D. H., Kabagoz, H. B., Karat, S., Karki, S., Kasprzack, M., Kawabe, K., Kijbunchoo, N., King, P. J., Kissel, J. S., Komori, K., Kontos, A., Kumar, Rahul, Kuns, K., Landry, M., Lantz, B., Laxen, M., Lee, K., Lesovsky, M., Villarreal, F. Llamas, Lormand, M., Loughlin, H. A., Macas, R., MacInnis, M., Makarem, C. N., Mannix, B., Mansell, G. L., Martin, R. M., Mason, K., Matichard, F., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McRae, T., Mera, F., Merilh, E. L., Meylahn, F., Mittleman, R., Moraru, D., Moreno, G., Mullavey, A., Nelson, T. J. N., Neunzert, A., Notte, J., Oberling, J., OHanlon, T., Osthelder, C., Ottaway, D. J., Overmier, H., Parker, W., Patane, O., Pele, A., Pham, H., Pirello, M., Pullin, J., Quetschke, V., Ramirez, K. E., Ransom, K., Reyes, J., Richardson, J. W., Robinson, M., Rollins, J. G., Romel, C. L., Romie, J. H., Ross, M. P., Ryan, K., Sadecki, T., Sanchez, A., Sanchez, E. J., Sanchez, L. E., Savage, R. L., Schaetzl, D., Schiworski, M. G., Schnabel, R., Schofield, R. M. S., Schwartz, E., Sellers, D., Shaffer, T., Short, R. W., Sigg, D., Slagmolen, B. J. J., Soike, C., Soni, S., Srivastava, V., Sun, L., Tanner, D. B., Thomas, M., Thomas, P., Thorne, K. A., Todd, M. R., Torrie, C. I., Traylor, G., Ubhi, A. S., Vajente, G., Vanosky, J., Vecchio, A., Veitch, P. J., Vibhute, A. M., von Reis, E. R. G., Warner, J., Weaver, B., Weiss, R., Whittle, C., Willke, B., Wipf, C. C., Wright, J. L., Yamamoto, H., Zhang, L., and Zucker, M. E.
- Subjects
General Relativity and Quantum Cosmology ,Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors ,Physics - Optics ,Quantum Physics - Abstract
On May 24th, 2023, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), joined by the Advanced Virgo and KAGRA detectors, began the fourth observing run for a two-year-long dedicated search for gravitational waves. The LIGO Hanford and Livingston detectors have achieved an unprecedented sensitivity to gravitational waves, with an angle-averaged median range to binary neutron star mergers of 152 Mpc and 160 Mpc, and duty cycles of 65.0% and 71.2%, respectively, with a coincident duty cycle of 52.6%. The maximum range achieved by the LIGO Hanford detector is 165 Mpc and the LIGO Livingston detector 177 Mpc, both achieved during the second part of the fourth observing run. For the fourth run, the quantum-limited sensitivity of the detectors was increased significantly due to the higher intracavity power from laser system upgrades and replacement of core optics, and from the addition of a 300 m filter cavity to provide the squeezed light with a frequency-dependent squeezing angle, part of the A+ upgrade program. Altogether, the A+ upgrades led to reduced detector-wide losses for the squeezed vacuum states of light which, alongside the filter cavity, enabled broadband quantum noise reduction of up to 5.2 dB at the Hanford observatory and 6.1 dB at the Livingston observatory. Improvements to sensors and actuators as well as significant controls commissioning increased low frequency sensitivity. This paper details these instrumental upgrades, analyzes the noise sources that limit detector sensitivity, and describes the commissioning challenges of the fourth observing run., Comment: 26 pages, 18 figures
- Published
- 2024
28. A Glimpse of the New Redshift Frontier Through Abell S1063
- Author
-
Kokorev, Vasily, Atek, Hakim, Chisholm, John, Endsley, Ryan, Chemerynska, Iryna, Muñoz, Julian B., Furtak, Lukas J., Pan, Richard, Berg, Danielle, Fujimoto, Seiji, Oesch, Pascal A., Weibel, Andrea, Adamo, Angela, Blaizot, Jeremy, Bouwens, Rychard, Dessauges-Zavadsky, Miroslava, Khullar, Gourav, Korber, Damien, Goovaerts, Ilias, Jecmen, Michelle, Labbé, Ivo, Leclercq, Floriane, Marques-Chaves, Rui, Mason, Charlotte, McQuinn, Kristen B. W., Naidu, Rohan, Natarajan, Priyamvada, Nelson, Erica, Rosdahl, Joki, Saldana-Lopez, Alberto, Schaerer, Daniel, Trebitsch, Maxime, Volonteri, Marta, and Zitrin, Adi
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We report the discovery of five galaxy candidates at redshifts between $15.9
- Published
- 2024
29. Investigation of magnetic excitations and charge order in a van der Waals ferromagnet Fe$_5$GeTe$_2$
- Author
-
Bhartiya, V. K., Kim, T., Li, J., Darlington, T. P., Rizzo, D. J., Gu., Y., Fan, S., Nelson, C., Freeland, J. W., Xu, X., Basov, D. N., Pelliciari, J., May, A. F., Mazzoli, C., and Bisogni, V.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
Understanding the complex ground state of van der Waals (vdW) magnets is essential for designing new materials and devices that leverage these platforms. Here, we investigate a two-dimensional vdW ferromagnet -- Fe$_5$GeTe$_2$-- with one of the highest reported Curie temperatures, to elucidate its magnetic excitations and charge order. Using Fe $L_3 - $edge resonant inelastic x-ray scattering, we find the dual character of magnetic excitations, consisting of a coherent magnon and a continuum, similar to what is reported for its sister compound Fe$_3$GeTe$_2$. The magnon has an energy of $\approx$ 36 meV at the maximum in-plane momentum transfer ($-$0.35 r.l.u.) allowed at Fe $L_3 - $edge. A broad and non-dispersive continuum extends up to 150 meV, 50$\%$ higher energy than in Fe$_3$GeTe$_2$. Its intensity is sinusoidally modulated along the $L$ direction, with a period matching the inter-slab distance. Our findings suggest that while the unconventional dual character of magnetic excitations is generic to ternary Fe-Ge-Te vdW magnets, the correlation length of the out-of-plane magnetic interaction increases in Fe$_5$GeTe$_2$ as compared to Fe$_3$GeTe$_2$, supporting a stronger three-dimensional character for the former. Furthermore, by investigating the $\pm$(1/3, 1/3, $L$) peaks by resonant x-ray diffraction, we conclude these to have structural origin rather than charge order -- as previously reported -- and suggest doubling of the structural unit cell along the $c-$axis., Comment: 17 pages, 3 figures
- Published
- 2024
30. Quenching of Galaxies at Cosmic Noon: Understanding the Effect of Environment
- Author
-
Singh, Akriti, Guaita, Lucia, Hibon, Pascale, Häussler, Boris, Lee, Kyoung-Soo, Ramakrishnan, Vandana, Kumar, Ankit, Padilla, Nelson, Firestone, Nicole M., Song, Hyunmi, Artale, Maria Celeste, Hwang, Ho Seong, Iribarren, Paulina Troncoso, Gronwall, Caryl, Gawiser, Eric, Nantais, Julie, Valdes, Francisco, Park, Changbom, and Yang, Yujin
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The aim of this study is to identify quiescent galaxies in the 2-deg$^2$ COSMOS field at $z \sim 3.1$ and analyze their environment. Using data from the ODIN survey and COSMOS2020 catalog, we identify 24 massive quiescent galaxies (MQGs) with stellar masses $\geq 10^{10.6}$ and derive their star formation histories and quenching timescales using SED fitting with BAGPIPES. Voronoi-based density maps trace local and large-scale environments using Lyman-$\alpha$ Emitters and photometric galaxies. Results indicate uniformly short quenching timescales ($<$500 Myr) independent of environmental density, suggesting rapid internal mechanisms such as AGN feedback dominate over environmental factors. MQGs do not correlate with protoclusters or filaments, although some are near gas-rich filaments but show no rejuvenation. These findings suggest quenching at high redshift is driven primarily by internal processes rather than environmental interactions.
- Published
- 2024
31. Estimating Dark Matter Halo Masses in Simulated Galaxy Clusters with Graph Neural Networks
- Author
-
Garuda, Nikhil, Wu, John F., Nelson, Dylan, and Pillepich, Annalisa
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Computer Science - Artificial Intelligence - Abstract
Galaxies grow and evolve in dark matter halos. Because dark matter is not visible, galaxies' halo masses ($\rm{M}_{\rm{halo}}$) must be inferred indirectly. We present a graph neural network (GNN) model for predicting $\rm{M}_{\rm{halo}}$ from stellar mass ($\rm{M}_{*}$) in simulated galaxy clusters using data from the IllustrisTNG simulation suite. Unlike traditional machine learning models like random forests, our GNN captures the information-rich substructure of galaxy clusters by using spatial and kinematic relationships between galaxy neighbour. A GNN model trained on the TNG-Cluster dataset and independently tested on the TNG300 simulation achieves superior predictive performance compared to other baseline models we tested. Future work will extend this approach to different simulations and real observational datasets to further validate the GNN model's ability to generalise., Comment: 9 pages, 4 figures, accepted at the NeurIPS ML4PS 2024 workshop
- Published
- 2024
32. Reward driven workflows for unsupervised explainable analysis of phases and ferroic variants from atomically resolved imaging data
- Author
-
Barakati, Kamyar, Liu, Yu, Nelson, Chris, Ziatdinov, Maxim A., Zhang, Xiaohang, Takeuchi, Ichiro, and Kalinin, Sergei V.
- Subjects
Condensed Matter - Materials Science ,Computer Science - Human-Computer Interaction ,Computer Science - Machine Learning - Abstract
Rapid progress in aberration corrected electron microscopy necessitates development of robust methods for the identification of phases, ferroic variants, and other pertinent aspects of materials structure from imaging data. While unsupervised methods for clustering and classification are widely used for these tasks, their performance can be sensitive to hyperparameter selection in the analysis workflow. In this study, we explore the effects of descriptors and hyperparameters on the capability of unsupervised ML methods to distill local structural information, exemplified by discovery of polarization and lattice distortion in Sm doped BiFeO3 (BFO) thin films. We demonstrate that a reward-driven approach can be used to optimize these key hyperparameters across the full workflow, where rewards were designed to reflect domain wall continuity and straightness, ensuring that the analysis aligns with the material's physical behavior. This approach allows us to discover local descriptors that are best aligned with the specific physical behavior, providing insight into the fundamental physics of materials. We further extend the reward driven workflows to disentangle structural factors of variation via optimized variational autoencoder (VAE). Finally, the importance of well-defined rewards was explored as a quantifiable measure of success of the workflow., Comment: 19 pages, 6 figures
- Published
- 2024
33. Ethical Challenges and Evolving Strategies in the Integration of Artificial Intelligence into Clinical Practice
- Author
-
Weiner, Ellison B., Dankwa-Mullan, Irene, Nelson, William A., and Hassanpour, Saeed
- Subjects
Computer Science - Computers and Society ,Computer Science - Artificial Intelligence - Abstract
Artificial intelligence (AI) has rapidly transformed various sectors, including healthcare, where it holds the potential to revolutionize clinical practice and improve patient outcomes. However, its integration into medical settings brings significant ethical challenges that need careful consideration. This paper examines the current state of AI in healthcare, focusing on five critical ethical concerns: justice and fairness, transparency, patient consent and confidentiality, accountability, and patient-centered and equitable care. These concerns are particularly pressing as AI systems can perpetuate or even exacerbate existing biases, often resulting from non-representative datasets and opaque model development processes. The paper explores how bias, lack of transparency, and challenges in maintaining patient trust can undermine the effectiveness and fairness of AI applications in healthcare. In addition, we review existing frameworks for the regulation and deployment of AI, identifying gaps that limit the widespread adoption of these systems in a just and equitable manner. Our analysis provides recommendations to address these ethical challenges, emphasizing the need for fairness in algorithm design, transparency in model decision-making, and patient-centered approaches to consent and data privacy. By highlighting the importance of continuous ethical scrutiny and collaboration between AI developers, clinicians, and ethicists, we outline pathways for achieving more responsible and inclusive AI implementation in healthcare. These strategies, if adopted, could enhance both the clinical value of AI and the trustworthiness of AI systems among patients and healthcare professionals, ensuring that these technologies serve all populations equitably.
- Published
- 2024
34. Pedagogical Design Considerations for Mobile Augmented Reality Serious Games (MARSGs): A Literature Review
- Author
-
Nelson, Cassidy R. and Gabbard, Joseph L.
- Subjects
Computer Science - Human-Computer Interaction - Abstract
As technology advances, conceptualizations of effective strategies for teaching and learning shift. Due in part to their facilitation of unique affordances for learning, mobile devices, augmented reality, and games are all becoming more prominent elements in learning environments. In this work, we examine mobile augmented reality serious games (MARSGs) as the intersection of these technology-based experiences and to what effect their combination can yield even greater learning outcomes. We present a PRISMA review of 23 papers (from 610) spanning the entire literature timeline from 2002 to 2023. Among these works, there is wide variability in the realized application of game elements and pedagogical theories underpinning the game experience. For an educational tool to be effective, it must be designed to facilitate learning while anchored by pedagogical theory. Given that most MARSG developers are not pedagogical experts, this review further provides design considerations regarding which game elements might proffer the best of three major pedagogical theories for modern learning (cognitive constructivism, social constructivism, and behaviorism) based on existing applications. We will also briefly touch on radical constructivism and the instructional elements embedded within MARSGs. Lastly, this work offers a synthesis of current MARSG findings and extended future directions for MARSG development.
- Published
- 2024
- Full Text
- View/download PDF
35. Nonresonant Raman control of material phases
- Author
-
Shi, Jiaojian, Heide, Christian, Xu, Haowei, Huang, Yijing, Shen, Yuejun, Guzelturk, Burak, Henstridge, Meredith, Schön, Carl Friedrich, Mangu, Anudeep, Kobayashi, Yuki, Peng, Xinyue, Zhang, Shangjie, May, Andrew F., Reddy, Pooja Donthi, Shautsova, Viktoryia, Taghinejad, Mohammad, Luo, Duan, Hughes, Eamonn, Brongersma, Mark L., Mukherjee, Kunal, Trigo, Mariano, Heinz, Tony F., Li, Ju, Nelson, Keith A., Baldini, Edoardo, Zhou, Jian, Ghimire, Shambhu, Wuttig, Matthias, Reis, David A., and Lindenberg, Aaron M.
- Subjects
Physics - Optics ,Condensed Matter - Materials Science - Abstract
Important advances have recently been made in the search for materials with complex multi-phase landscapes that host photoinduced metastable collective states with exotic functionalities. In almost all cases so far, the desired phases are accessed by exploiting light-matter interactions via the imaginary part of the dielectric function through above-bandgap or resonant mode excitation. Nonresonant Raman excitation of coherent modes has been experimentally observed and proposed for dynamic material control, but the resulting atomic excursion has been limited to perturbative levels. Here, we demonstrate that it is possible to overcome this challenge by employing nonresonant ultrashort pulses with low photon energies well below the bandgap. Using mid-infrared pulses, we induce ferroelectric reversal in lithium niobate and phase switching in tin selenide and characterize the large-amplitude mode displacements through femtosecond Raman scattering, second harmonic generation, and x-ray diffraction. This approach, validated by first-principle calculations, defines a novel method for synthesizing hidden phases with unique functional properties and manipulating complex energy landscapes at reduced energy consumption and ultrafast speeds., Comment: 5 figures
- Published
- 2024
36. Improving the accuracy of automated labeling of specimen images datasets via a confidence-based process
- Author
-
Bateux, Quentin, Koss, Jonathan, Sweeney, Patrick W., Edwards, Erika, Rios, Nelson, and Dollar, Aaron M.
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Quantitative Biology - Populations and Evolution - Abstract
The digitization of natural history collections over the past three decades has unlocked a treasure trove of specimen imagery and metadata. There is great interest in making this data more useful by further labeling it with additional trait data, and modern deep learning machine learning techniques utilizing convolutional neural nets (CNNs) and similar networks show particular promise to reduce the amount of required manual labeling by human experts, making the process much faster and less expensive. However, in most cases, the accuracy of these approaches is too low for reliable utilization of the automatic labeling, typically in the range of 80-85% accuracy. In this paper, we present and validate an approach that can greatly improve this accuracy, essentially by examining the confidence that the network has in the generated label as well as utilizing a user-defined threshold to reject labels that fall below a chosen level. We demonstrate that a naive model that produced 86% initial accuracy can achieve improved performance - over 95% accuracy (rejecting about 40% of the labels) or over 99% accuracy (rejecting about 65%) by selecting higher confidence thresholds. This gives flexibility to adapt existing models to the statistical requirements of various types of research and has the potential to move these automatic labeling approaches from being unusably inaccurate to being an invaluable new tool. After validating the approach in a number of ways, we annotate the reproductive state of a large dataset of over 600,000 herbarium specimens. The analysis of the results points at under-investigated correlations as well as general alignment with known trends. By sharing this new dataset alongside this work, we want to allow ecologists to gather insights for their own research questions, at their chosen point of accuracy/coverage trade-off.
- Published
- 2024
37. The Multi-Scale Multi-Phase Circumgalactic Medium: Observed and Simulated
- Author
-
Peroux, Celine and Nelson, Dylan
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
These are exciting times for studies of galaxy formation and the growth of structures. New observatories and advanced simulations are revolutionising our understanding of the cycling of matter into, through, and out of galaxies. This chapter first describes why baryons are essential for galaxy evolution, providing a key test of Lambda-Cold Dark Matter cosmological model. In particular, we describe a basic framework to convert measurements of the gas properties observed in absorption spectra into global estimates of the condensed (stars and cold gas) matter mass densities. We then review our current understanding of the cycling of baryons from global to galactic scales, in the so-called circumgalactic medium. The final sections are dedicated to future prospects, identifying new techniques and up-coming facilities as well as key open questions. This chapter is complemented with a series of hands-on exercises which provide a practical guide to using publicly available hydrodynamical cosmological simulations. Beyond providing a direct connection between new observations and advanced simulations, these exercises give the reader the necessary tools to make use of these theoretical models to address their own science questions. Ultimately, our increasingly accurate description of the circumgalactic medium reveals its crucial role in transforming the pristine early Universe into the rich and diverse Universe of the present day., Comment: Lecture notes for the 52^nd (March 2023) Saas-Fee Advanced School, Switzerland; 89 pages, 42 figures
- Published
- 2024
38. LA4SR: illuminating the dark proteome with generative AI
- Author
-
Nelson, David R., Jaiswal, Ashish Kumar, Ismail, Noha, Mystikou, Alexandra, and Salehi-Ashtiani, Kourosh
- Subjects
Quantitative Biology - Genomics ,Computer Science - Artificial Intelligence ,Computer Science - Computation and Language ,Quantitative Biology - Quantitative Methods - Abstract
AI language models (LMs) show promise for biological sequence analysis. We re-engineered open-source LMs (GPT-2, BLOOM, DistilRoBERTa, ELECTRA, and Mamba, ranging from 70M to 12B parameters) for microbial sequence classification. The models achieved F1 scores up to 95 and operated 16,580x faster and at 2.9x the recall of BLASTP. They effectively classified the algal dark proteome - uncharacterized proteins comprising about 65% of total proteins - validated on new data including a new, complete Hi-C/Pacbio Chlamydomonas genome. Larger (>1B) LA4SR models reached high accuracy (F1 > 86) when trained on less than 2% of available data, rapidly achieving strong generalization capacity. High accuracy was achieved when training data had intact or scrambled terminal information, demonstrating robust generalization to incomplete sequences. Finally, we provide custom AI explainability software tools for attributing amino acid patterns to AI generative processes and interpret their outputs in evolutionary and biophysical contexts.
- Published
- 2024
39. UWB Narrowband Interference Survey and Design Considerations
- Author
-
Nelson, Brian, Moradi, Hussein, and Farhang-Boroujeny, Behrouz
- Subjects
Electrical Engineering and Systems Science - Signal Processing - Abstract
A study of interference caused by incumbent radios to UWB devices is presented. Through an extensive set of measured spectral activities in the low-band IEEE802.15.4 UWB operating channels, we explore the outage probabilities of a UWB system when it is equipped with an intelligent detector for combating interferers and compare them against those of a naive system that has no interference avoidance capability. Our results reveal that a UWB system with an effective interference avoidance capability may lead to a few orders of magnitude improvement in its outage probabilities. The measured outage probabilities are confirmed through measuring the frame error rate of a simulated filter-bank UWB transceiver system when impacted by the interferences obtained through our experiments., Comment: 7 pages, 9 figures, submitted to the IEEE International Conference on Communications
- Published
- 2024
40. One Attack to Rule Them All: Tight Quadratic Bounds for Adaptive Queries on Cardinality Sketches
- Author
-
Cohen, Edith, Nelson, Jelani, Sarlós, Tamás, Singhal, Mihir, and Stemmer, Uri
- Subjects
Computer Science - Data Structures and Algorithms - Abstract
Cardinality sketches are compact data structures for representing sets or vectors, enabling efficient approximation of their cardinality (or the number of nonzero entries). These sketches are space-efficient, typically requiring only logarithmic storage relative to input size, and support incremental updates, allowing for dynamic modifications. A critical property of many cardinality sketches is composability, meaning that the sketch of a union of sets can be computed from individual sketches. Existing designs typically provide strong statistical guarantees, accurately answering an exponential number of queries in terms of sketch size $k$. However, these guarantees degrade to quadratic in $k$ when queries are adaptive and may depend on previous responses. Prior works on statistical queries (Steinke and Ullman, 2015) and specific MinHash cardinality sketches (Ahmadian and Cohen, 2024) established that the quadratic bound on the number of adaptive queries is, in fact, unavoidable. In this work, we develop a unified framework that generalizes these results across broad classes of cardinality sketches. We show that any union-composable sketching map is vulnerable to attack with $\tilde{O}(k^4)$ queries and, if the sketching map is also monotone (as for MinHash and statistical queries), we obtain a tight bound of $\tilde{O}(k^2)$ queries. Additionally, we demonstrate that linear sketches over the reals $\mathbb{R}$ and fields $\mathbb{F}_p$ can be attacked using $\tilde{O}(k^2)$ adaptive queries, which is optimal and strengthens some of the recent results by Gribelyuk et al. (2024), which required a larger polynomial number of rounds for such matrices.
- Published
- 2024
41. Filter-Banks for Ultra-Wideband Communications: Advantages and Design Challenges
- Author
-
Nelson, Brian, Moradi, Hussein, and Farhang-Boroujeny, Behrouz
- Subjects
Electrical Engineering and Systems Science - Signal Processing - Abstract
Recently, filter-bank multicarrier spread spectrum (FBMC-SS) has been proposed as a candidate waveform for ultra-wideband (UWB) communications. It has been noted that FBMC-SS is a perfect match to this application, leading to a trivial method of matching to the required spectral mask at different regions of the world. FBMC-SS also allows easy rejection of high-power interfering signals that may appear over different parts of the UWB spectral band. In this paper, we concentrate on the use of staggered multitone spread spectrum (SMT-SS) for UWB communications. SMT makes use of offset quadrature amplitude modulation (OQAM) to transmit data symbols over narrowband, overlapping subcarrier bands. This form of FBMC-SS is well-suited to UWB communications because it has good spectral efficiency and a flat power spectral density (PSD), resulting in good utilization of the UWB spectral mask. Additionally, we explore new methods for multi-coding that result in higher bit rates than previous FBMC-SS systems. Moreover, we study methods for equalizing the UWB multipath channel and cancelling narrowband interference. Excellent performance of the proposed methods are substantiated by presenting simulation results., Comment: 6 pages, 6 figures, submitted to IEEE International Communications Conference
- Published
- 2024
42. Misclassification of Vaccination Status in Electronic Health Records: A Bayesian Approach in Cluster Randomized Trials
- Author
-
Kaplan, Adam, Calvert, Collin, Griffith, Bridget C., Bertenthal, Daniel, Purcell, Natalie, Seal, Karen, Pyne, Jeffrey M., Oliver, Karen Anderson, Esserman, Denise, and Nelson, David
- Subjects
Statistics - Methodology - Abstract
Misclassification in binary outcomes is not uncommon and statistical methods to investigate its impact on policy-driving study results are lacking. While misclassifying binary outcomes is a statistically ubiquitous phenomena, we focus on misclassification in a public health application: vaccinations. One such study design in public health that addresses policy is the cluster controlled randomized trial (CCRT). A CCRT that measures the impact of a novel behavioral intervention on increasing vaccine uptake can be severely biased when the supporting data are incomplete vaccination records. In particular, these vaccine records more often may be prone to negative misclassification, that is, a clinic's record of an individual patient's vaccination status may be unvaccinated when, in reality, this patient was vaccinated outside of the clinic. With large nation-wide endeavors to encourage vaccinations without a gold-standard vaccine record system, sensitivity analyses that incorporate misclassification rates are promising for robust inference. In this work we introduce a novel extension of Bayesian logistic regression where we perturb the clinic size and vaccination count with random draws from expert-elicited prior distributions. These prior distributions represent the misclassification rates for each clinic that stochastically add unvaccinated counts to the observed vaccinated counts. These prior distributions are assigned for each clinic (the first level in a group-level randomized trial). We demonstrate this method with a data application from a CCRT evaluating the influence of a behavioral intervention on vaccination uptake among U.S. veterans. A simulation study is carried out demonstrating its estimation properties.
- Published
- 2024
43. Optimal vaccination strategies in the control of an infectious disease: a SEIRV model for administration of two vaccines
- Author
-
Junior, Nelson L. Santos and Gondim, João A. M.
- Subjects
Mathematics - Optimization and Control ,Mathematics - Dynamical Systems - Abstract
In this paper, we study the optimal control for an SEIR model adapted to the vaccination strategy of susceptible individuals. There are factors associated with a vaccination campaign that make this strategy not only a public health issue but also an economic one. In this case, optimal control is important as it minimizes implementation costs. We consider the availability of two vaccines with different efficacy levels, and the control indicates when each vaccine should be used. The optimal strategy specifies in all cases how vaccine purchases should be distributed. For similar efficacy values, we perform a sensitivity analysis on parameters that depend on the intrinsic characteristics of the vaccines. Additionally, we investigate the behavior of the number of infections under the optimal vaccination strategy.
- Published
- 2024
44. Non-destructive imaging of bulk electrical 'hidden' state switching in a 1T-TaS2 cryo-memory device
- Author
-
Burri, Corinna, Hua, Nelson, Sanchez, Dario Ferreira, Hu, Wenxiang, Bell, Henry G., Venturini, Rok, Huang, Shih-Wen, McConnell, Aidan G., Dizdarevic, Faris, Mraz, Anze, Svetin, Damjan, Lipovsek, Benjamin, Topic, Marko, Kazazis, Dimitrios, Aeppli, Gabriel, Grolimund, Daniel, Ekinci, Yasin, Mihailovic, Dragan, and Gerber, Simon
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
In transition metal dichalcogenides a plethora of emergent states arise from competing electron-electron and electron-phonon interactions. Among these, the non-volatile metallic 'hidden' state of 1T-TaS2 can be induced from its insulating equilibrium charge-density wave ground state using either optical or electrical pulses. Here we report in-operando micro-beam X-ray diffraction, fluorescence, and concurrent transport measurements, allowing us to spatially image the non-thermal hidden state induced by electrical switching of a 1T-TaS2 device. Our findings reveal that the electrically and optically switched hidden states are structurally equivalent. Additionally, we observe a bulk switching channel extending beyond the intergap space to partially underneath the electrodes, suggesting that the non-equilibrium phase is caused by a combination of charge flow and lattice response. Besides identifying strain propagation as an important factor for non-thermal switching of layered materials, our results illustrate the power of non-destructive, three-dimensional X-ray imaging for studying phase-change materials and devices.
- Published
- 2024
45. Can Custom Models Learn In-Context? An Exploration of Hybrid Architecture Performance on In-Context Learning Tasks
- Author
-
Campbell, Ryan, Lojo, Nelson, Viswanadha, Kesava, Tryggestad, Christoffer Grondal, Sun, Derrick Han, Vijapurapu, Sriteja, Rolfsen, August, and Sahai, Anant
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence - Abstract
In-Context Learning (ICL) is a phenomenon where task learning occurs through a prompt sequence without the necessity of parameter updates. ICL in Multi-Headed Attention (MHA) with absolute positional embedding has been the focus of more study than other sequence model varieties. We examine implications of architectural differences between GPT-2 and LLaMa as well as LlaMa and Mamba. We extend work done by Garg et al. (2022) and Park et al. (2024) to GPT-2/LLaMa hybrid and LLaMa/Mamba hybrid models - examining the interplay between sequence transformation blocks and regressive performance in-context. We note that certain architectural changes cause degraded training efficiency/ICL accuracy by converging to suboptimal predictors or converging slower. We also find certain hybrids showing optimistic performance improvements, informing potential future ICL-focused architecture modifications. Additionally, we propose the "ICL regression score", a scalar metric describing a model's whole performance on a specific task. Compute limitations impose restrictions on our architecture-space, training duration, number of training runs, function class complexity, and benchmark complexity. To foster reproducible and extensible research, we provide a typed, modular, and extensible Python package on which we run all experiments., Comment: 18 pages, 16 figures
- Published
- 2024
46. International Scientific Report on the Safety of Advanced AI (Interim Report)
- Author
-
Bengio, Yoshua, Mindermann, Sören, Privitera, Daniel, Besiroglu, Tamay, Bommasani, Rishi, Casper, Stephen, Choi, Yejin, Goldfarb, Danielle, Heidari, Hoda, Khalatbari, Leila, Longpre, Shayne, Mavroudis, Vasilios, Mazeika, Mantas, Ng, Kwan Yee, Okolo, Chinasa T., Raji, Deborah, Skeadas, Theodora, Tramèr, Florian, Adekanmbi, Bayo, Christiano, Paul, Dalrymple, David, Dietterich, Thomas G., Felten, Edward, Fung, Pascale, Gourinchas, Pierre-Olivier, Jennings, Nick, Krause, Andreas, Liang, Percy, Ludermir, Teresa, Marda, Vidushi, Margetts, Helen, McDermid, John A., Narayanan, Arvind, Nelson, Alondra, Oh, Alice, Ramchurn, Gopal, Russell, Stuart, Schaake, Marietje, Song, Dawn, Soto, Alvaro, Tiedrich, Lee, Varoquaux, Gaël, Yao, Andrew, and Zhang, Ya-Qin
- Subjects
Computer Science - Computers and Society ,Computer Science - Artificial Intelligence - Abstract
This is the interim publication of the first International Scientific Report on the Safety of Advanced AI. The report synthesises the scientific understanding of general-purpose AI -- AI that can perform a wide variety of tasks -- with a focus on understanding and managing its risks. A diverse group of 75 AI experts contributed to this report, including an international Expert Advisory Panel nominated by 30 countries, the EU, and the UN. Led by the Chair, these independent experts collectively had full discretion over the report's content., Comment: Available under the open government license at https://www.gov.uk/government/publications/international-scientific-report-on-the-safety-of-advanced-ai
- Published
- 2024
47. Polynomial-Time Classical Simulation of Noisy Circuits with Naturally Fault-Tolerant Gates
- Author
-
Nelson, Jon, Rajakumar, Joel, Hangleiter, Dominik, and Gullans, Michael J.
- Subjects
Quantum Physics ,Computer Science - Computational Complexity - Abstract
We construct a polynomial-time classical algorithm that samples from the output distribution of low-depth noisy Clifford circuits with any product-state inputs and final single-qubit measurements in any basis. This class of circuits includes Clifford-magic circuits and Conjugated-Clifford circuits, which are important candidates for demonstrating quantum advantage using non-universal gates. Additionally, our results generalize a simulation algorithm for IQP circuits [Rajakumar et. al, SODA'25] to the case of IQP circuits augmented with CNOT gates, which is another class of non-universal circuits that are relevant to current experiments. Importantly, our results do not require randomness assumptions over the circuit families considered (such as anticoncentration properties) and instead hold for every circuit in each class. This allows us to place tight limitations on the robustness of these circuits to noise. In particular, we show that there is no quantum advantage at large depths with realistically noisy Clifford circuits, even with perfect magic state inputs, or IQP circuits with CNOT gates, even with arbitrary diagonal non-Clifford gates. The key insight behind the algorithm is that interspersed noise causes a decay of long-range entanglement, and at depths beyond a critical threshold, the noise builds up to an extent that most correlations can be classically simulated. To prove our results, we merge techniques from percolation theory with tools from Pauli path analysis.
- Published
- 2024
48. Quandle Cohomology Quiver Representations
- Author
-
Nelson, Sam
- Subjects
Mathematics - Geometric Topology ,Mathematics - Quantum Algebra ,57K12 - Abstract
We define a family of quiver representation-valued invariants of oriented classical and virtual knots and links associated to a choice of finite quandle $X$, abelian group $A$, set of quandle 2-cocycles $C\subset H^2_Q(x;A)$, choice of coefficient ring $k$ and set of quandle endomorphisms $S\subset \mathrm{Hom}(X,X)$. From this representation we define four new polynomial (or ``polynomial'' depending on $A$) invariants. We generalize to the case of biquandles and compute some examples., Comment: 13 pages
- Published
- 2024
49. Spatial distributions of EUV brightenings in the quiet-Sun
- Author
-
Nelson, C. J., Hayes, L. A., Müller, D., Musset, S., Freij, N., Auchère, F., Cuadrado, R. Aznar, Barczynski, K., Buchlin, E., Harra, L., Long, D. M., Parenti, S., Peter, H., Schühle, U., Smith, P., Teriaca, L., Verbeeck, C., Zhukov, A. N., and Berghmans, D.
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
The identification of large numbers of localised transient EUV brightenings, with small spatial scales, in the quiet-Sun corona has been one of the key early results from Solar Orbiter. However, much is still unknown about these events. Here, we aim to better understand EUV brightenings by investigating their spatial distributions, specifically whether they occur co-spatial with specific line-of-sight magnetic field topologies in the photospheric network. EUV brightenings are detected using an automated algorithm applied to a high-cadence (3 s) dataset sampled over ~30 min on 8 March 2022 by the Extreme Ultraviolet Imager's 17.4 nm EUV High Resolution Imager. Data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly are used to provide context about the line-of-sight magnetic field and for alignment purposes. We found a total of 5064 EUV brightenings within this dataset that are directly comparable to events reported previously in the literature. These events occurred within around 0.015-0.020 % of pixels for any given frame. We compared eight different thresholds to split the EUV brightenings into four different categories related to the line-of-sight magnetic field. Using our preferred threshold, we found that 627 EUV brightenings (12.4 %) occurred co-spatial with Strong Bipolar configurations and 967 EUV brightenings (19.1 %) occurred in Weak Field regions. Fewer than 10 % of EUV brightenings occurred co-spatial with Unipolar line-of-sight magnetic field no matter what threshold was used. Of the 627 Strong Bipolar EUV Brightenings, 54 were found to occur co-spatial with cancellation whilst 57 occurred co-spatial with emergence. EUV brightenings preferentially occur co-spatial with the strong line-of-sight magnetic field in the photospheric network. They do not, though, predominantly occur co-spatial with (cancelling) bi-poles., Comment: 14 pages, 8 figures, accepted in A&A
- Published
- 2024
50. Optimal screening strategies in the control of an infectious disease: a case of the COVID-19 in a population with age structure
- Author
-
Junior, Nelson L. Santos and Gondim, João A. M.
- Subjects
Mathematics - Optimization and Control ,Mathematics - Dynamical Systems ,Quantitative Biology - Populations and Evolution - Abstract
After the COVID-19 pandemic, we saw an increase in demand for epidemiological mathematical models. The goal of this work is to study the optimal control for an age-structured model as a strategy of quarantine of infected people, which is done via Pontryagin's maximum principle. Since quarantine campaigns are not just a matter of public health, also posing economic challenges, the optimal control problem does not simply minimize the number of infected individuals. Instead, it jointly minimizes this number and the economic costs associated to the campaigns, providing data that can help authorities make decisions when dealing with epidemics. The controls are the quarantine entrance parameters, which are numerically calculated for different lengths of isolation. The best strategies gives a calendar that indicates when the isolation measures can be relaxed, and the consequences of a delay in the start of the quarantine are analyzed by presenting the reduction in the number of deaths for the strategy with optimal control compared to a no-quarantine landscape.
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.