This study aimed to determine the influence of heat stress during the dry period on milk yield and reproductive performance of Holstein cows in a hot environment. Breeding and milk production records of cows, as well as meteorological data between 2017 and 2020 from a commercial dairy herd (n = 12,102 lactations), were used to determine the relationship between climatic conditions during the dry period (average of the temperature-humidity index (THI) at the beginning, middle, and end of the dry period) and reproductive efficiency and milk yield traits. THI was divided into < 70 (no heat stress), 70-80 (moderate heat stress), and > 80 (severe heat stress). First-service pregnancy rate of cows decreased (P < 0.01) with increasing hyperthermia during the dry period (9.5, 7.3, and 3.4% for THI < 70, 70-80, and > 80, respectively). All-service pregnancy rate was highest (P < 0.01) for cows not undergoing heat stress during the dry period (60.2%) and lowest (42.6%) for cows with severe heat stress during the dry period. Cows not experiencing heat stress during the dry period required a mean ± SD of 5.6 ± 3.8 services per pregnancy compared with 6.5 ± 3.6 (P < 0.01) for cows subjected to THI > 80 during the dry period. Cows not suffering heat stress during the dry period produced more (P < 0.01) 305-day milk (10,926 ± 1206 kg) than cows subjected to moderate (10,799 ± 1254 kg) or severe (10,691 ± 1297 kg) heat stress during the dry period. Total milk yield did not differ (P > 0.10) between cows not undergoing heat stress (13,337 ± 3346 kg) and cows subjected to severe heat stress during the dry period (13,911 ± 4018 kg). It was concluded that environmental management of dry cows during hot months is warranted to maximize reproductive performance and milk yield in the following lactation., (© 2024. The Author(s) under exclusive licence to International Society of Biometeorology.)