1. Versatile, fast and accurate frequency excursions with a semiconductor laser
- Author
-
Llauze, Thomas, Montjovet-Basset, Félix, and Louchet-Chauvet, Anne
- Subjects
Physics - Optics - Abstract
Achieving accurate arbitrary frequency excursions with a laser can be quite a technical challenge, especially when steep slopes (GHz/$\mu$s) are required, due to both deterministic and stochastic frequency fluctuations. In this work we present a multi-stage correction combining four techniques: pre-distorsion of the laser modulation, iterative correction, opto-electronic feedback loop and feed-forward correction. This combination allows not only to compensate for the non-instantaneous response of the laser to an input modulation, but also to correct in real time the stochastic frequency fluctuations. We implement this multi-stage architecture on a commercial DBR laser and verify its efficiency, first with monochromatic operation and second with highly demanding frequency excursions. We demonstrate that our multi-stage correction not only enables a strong reduction of the laser linewidth, but also allows steep frequency excursions with a relative RMS frequency error well below $1$%, and a laser spectral purity consistently better than $100$~kHz even in the midst of GHz-scale frequency excursions., Comment: 20 pages, 17 figures
- Published
- 2024
- Full Text
- View/download PDF