1. Late gadolinium enhancement cardiovascular magnetic resonance with generative artificial intelligence
- Author
-
Omer Burak Demirel, Fahime Ghanbari, Christopher W. Hoeger, Connie W. Tsao, Adele Carty, Long H. Ngo, Patrick Pierce, Scott Johnson, Kathryn Arcand, Jordan Street, Jennifer Rodriguez, Tess E. Wallace, Kelvin Chow, Warren J. Manning, and Reza Nezafat more...
- Subjects
Late gadolinium enhancement ,Highly accelerated ,Deep learning ,Diseases of the circulatory (Cardiovascular) system ,RC666-701 - Abstract
ABSTRACT: Background: Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging enables imaging of scar/fibrosis and is a cornerstone of most CMR imaging protocols. CMR imaging can benefit from image acceleration; however, image acceleration in LGE remains challenging due to its limited signal-to-noise ratio. In this study, we sought to evaluate a rapid two-dimensional (2D) LGE imaging protocol using a generative artificial intelligence (AI) algorithm with inline reconstruction. Methods: A generative AI-based image enhancement was used to improve the sharpness of 2D LGE images acquired with low spatial resolution in the phase-encode direction. The generative AI model is an image enhancement technique built on the enhanced super-resolution generative adversarial network. The model was trained using balanced steady-state free-precession cine images, readily used for LGE without additional training. The model was implemented inline, allowing the reconstruction of images on the scanner console. We prospectively enrolled 100 patients (55 ± 14 years, 72 males) referred for clinical CMR at 3T. We collected three sets of LGE images in each subject, with in-plane spatial resolutions of 1.5 × 1.5-3-6 mm2. The generative AI model enhanced in-plane resolution to 1.5 × 1.5 mm2 from the low-resolution counterparts. Images were compared using a blur metric, quantifying the perceived image sharpness (0 = sharpest, 1 = blurriest). LGE image sharpness (using a 5-point scale) was assessed by three independent readers. Results: The scan times for the three imaging sets were 15 ± 3, 9 ± 2, and 6 ± 1 s, with inline generative AI-based images reconstructed time of ∼37 ms. The generative AI-based model improved visual image sharpness, resulting in lower blur metric compared to low-resolution counterparts (AI-enhanced from 1.5 × 3 mm2 resolution: 0.3 ± 0.03 vs 0.35 ± 0.03, P more...
- Published
- 2025
- Full Text
- View/download PDF