Background: Magnetic resonance imaging (MRI) is useful in the diagnosis of clinically significant prostate cancer (csPCa). MRI-derived radiomics may support the diagnosis of csPCa., Purpose: To investigate whether adding radiomics from biparametric MRI to predictive models based on clinical and MRI parameters improves the prediction of csPCa in a multisite-multivendor setting., Material and Methods: Clinical information (PSA, PSA density, prostate volume, and age), MRI reviews (PI-RADS 2.1), and radiomics (histogram and texture features) were retrieved from prospectively included patients examined at different radiology departments and with different MRI systems, followed by MRI-ultrasound fusion guided biopsies of lesions PI-RADS 3-5. Predictive logistic regression models of csPCa (Gleason score ≥7) for the peripheral (PZ) and transition zone (TZ), including clinical data and PI-RADS only, and combined with radiomics, were built and compared using receiver operating characteristic (ROC) curves., Results: In total, 456 lesions in 350 patients were analyzed. In PZ and TZ, PI-RADS 4-5 and PSA density, and age in PZ, were independent predictors of csPCa in models without radiomics. In models including radiomics, PI-RADS 4-5, PSA density, age, and ADC energy were independent predictors in PZ, and PI-RADS 5, PSA density and ADC mean in TZ. Comparison of areas under the ROC curve (AUC) for the models without radiomics (PZ: AUC = 0.82, TZ: AUC = 0.80) versus with radiomics (PZ: AUC = 0.82, TZ: AUC = 0.82) showed no significant differences (PZ: P = 0.366; TZ: P = 0.171)., Conclusion: PSA density and PI-RADS are potent predictors of csPCa. Radiomics do not add significant information to our multisite-multivendor dataset., Competing Interests: Declaration of conflicting interestsThe authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.