15 results on '"Kawana, Akihiko"'
Search Results
2. Quantification of escape from X chromosome inactivation with single-cell omics data reveals heterogeneity across cell types and tissues
- Author
-
Charoensawan, Varodom, Hon, Chung-Chau, Majumder, Partha P., Matangkasombut, Ponpan, Park, Woong-Yang, Prabhakar, Shyam, Shin, Jay W., Carninci, Piero, Chambers, John C., Loh, Marie, Pithukpakorn, Manop, Suktitipat, Bhoom, Yamamoto, Kazuhiko, Rajagopalan, Deepa, Rayan, Nirmala Arul, Sankaran, Shvetha, Chantaraamporn, Juthamard, Chatterjee, Ankita, Ghosh, Supratim, Han, Kyung Yeon, Jevapatarakul, Damita, Nguantad, Sarintip, Sarkar, Sumanta, Thungsatianpun, Narita, Abe, Mai, Furukawa, Seiko, Inoue, Gyo, Myouzen, Keiko, Oh, Jin-Mi, Suzuki, Akari, Ando, Yoshinari, Kojima, Miki, Kouno, Tsukasa, Lim, Jinyeong, Maitra, Arindam, Tan, Le Min, Venkatesh, Prasanna Nori, Choi, Murim, Park, Jong-Eun, Buyamin, Eliora Violain, Kock, Kian Hong, Xuan Lin, Quy Xiao, Moody, Jonathan, Sonthalia, Radhika, Ishigaki, Kazuyoshi, Nakano, Masahiro, Okada, Yukinori, Tomofuji, Yoshihiko, Ho Namkoong, Edahiro, Ryuya, Takano, Tomomi, Nishihara, Hiroshi, Shirai, Yuya, Sonehara, Kyuto, Tanaka, Hiromu, Azekawa, Shuhei, Mikami, Yohei, Lee, Ho, Hasegawa, Takanori, Okudela, Koji, Okuzaki, Daisuke, Motooka, Daisuke, Kanai, Masahiro, Naito, Tatsuhiko, Yamamoto, Kenichi, Wang, Qingbo S., Saiki, Ryunosuke, Ishihara, Rino, Matsubara, Yuta, Hamamoto, Junko, Hayashi, Hiroyuki, Yoshimura, Yukihiro, Tachikawa, Natsuo, Yanagita, Emmy, Hyugaji, Takayoshi, Shimizu, Eigo, Katayama, Kotoe, Kato, Yasuhiro, Morita, Takayoshi, Takahashi, Kazuhisa, Harada, Norihiro, Naito, Toshio, Hiki, Makoto, Matsushita, Yasushi, Takagi, Haruhi, Aoki, Ryousuke, Nakamura, Ai, Harada, Sonoko, Sasano, Hitoshi, Kabata, Hiroki, Masaki, Katsunori, Kamata, Hirofumi, Ikemura, Shinnosuke, Chubachi, Shotaro, Okamori, Satoshi, Terai, Hideki, Morita, Atsuho, Asakura, Takanori, Sasaki, Junichi, Morisaki, Hiroshi, Uwamino, Yoshifumi, Nanki, Kosaku, Uchida, Sho, Uno, Shunsuke, Nishimura, Tomoyasu, Ishiguro, Takashi, Isono, Taisuke, Shibata, Shun, Matsui, Yuma, Hosoda, Chiaki, Takano, Kenji, Nishida, Takashi, Kobayashi, Yoichi, Takaku, Yotaro, Takayanagi, Noboru, Ueda, Soichiro, Tada, Ai, Miyawaki, Masayoshi, Yamamoto, Masaomi, Yoshida, Eriko, Hayashi, Reina, Nagasaka, Tomoki, Arai, Sawako, Kaneko, Yutaro, Sasaki, Kana, Tagaya, Etsuko, Kawana, Masatoshi, Arimura, Ken, Takahashi, Kunihiko, Anzai, Tatsuhiko, Ito, Satoshi, Endo, Akifumi, Uchimura, Yuji, Miyazaki, Yasunari, Honda, Takayuki, Tateishi, Tomoya, Tohda, Shuji, Ichimura, Naoya, Sonobe, Kazunari, Sassa, Chihiro Tani, Nakajima, Jun, Nakano, Yasushi, Nakajima, Yukiko, Anan, Ryusuke, Arai, Ryosuke, Kurihara, Yuko, Harada, Yuko, Nishio, Kazumi, Ueda, Tetsuya, Azuma, Masanori, Saito, Ryuichi, Sado, Toshikatsu, Miyazaki, Yoshimune, Sato, Ryuichi, Haruta, Yuki, Nagasaki, Tadao, Yasui, Yoshinori, Hasegawa, Yoshinori, Mutoh, Yoshikazu, Kimura, Tomoki, Sato, Tomonori, Takei, Reoto, Hagimoto, Satoshi, Noguchi, Yoichiro, Yamano, Yasuhiko, Sasano, Hajime, Ota, Sho, Nakamori, Yasushi, Yoshiya, Kazuhisa, Saito, Fukuki, Yoshihara, Tomoyuki, Wada, Daiki, Iwamura, Hiromu, Kanayama, Syuji, Maruyama, Shuhei, Yoshiyama, Takashi, Ohta, Ken, Kokuto, Hiroyuki, Ogata, Hideo, Tanaka, Yoshiaki, Arakawa, Kenichi, Shimoda, Masafumi, Osawa, Takeshi, Tateno, Hiroki, Hase, Isano, Yoshida, Shuichi, Suzuki, Shoji, Kawada, Miki, Horinouchi, Hirohisa, Saito, Fumitake, Mitamura, Keiko, Hagihara, Masao, Ochi, Junichi, Uchida, Tomoyuki, Baba, Rie, Arai, Daisuke, Ogura, Takayuki, Takahashi, Hidenori, Hagiwara, Shigehiro, Nagao, Genta, Konishi, Shunichiro, Nakachi, Ichiro, Murakami, Koji, Yamada, Mitsuhiro, Sugiura, Hisatoshi, Sano, Hirohito, Matsumoto, Shuichiro, Kimura, Nozomu, Ono, Yoshinao, Baba, Hiroaki, Suzuki, Yusuke, Nakayama, Sohei, Masuzawa, Keita, Namba, Shinichi, Suzuki, Ken, Naito, Yoko, Liu, Yu-Chen, Takuwa, Ayako, Sugihara, Fuminori, Wing, James B., Sakakibara, Shuhei, Hizawa, Nobuyuki, Shiroyama, Takayuki, Miyawaki, Satoru, Kawamura, Yusuke, Nakayama, Akiyoshi, Matsuo, Hirotaka, Yuichi, Maeda, Nii, Takuro, Noda, Yoshimi, Niitsu, Takayuki, Adachi, Yuichi, Enomoto, Takatoshi, Amiya, Saori, Hara, Reina, Yamaguchi, Yuta, Murakami, Teruaki, Kuge, Tomoki, Matsumoto, Kinnosuke, Yamamoto, Yuji, Yamamoto, Makoto, Yoneda, Midori, Kishikawa, Toshihiro, Yamada, Shuhei, Kawabata, Shuhei, Kijima, Noriyuki, Takagaki, Masatoshi, Sasa, Noah, Ueno, Yuya, Suzuki, Motoyuki, Takemoto, Norihiko, Eguchi, Hirotaka, Fukusumi, Takahito, Imai, Takao, Fukushima, Munehisa, Kishima, Haruhiko, Inohara, Hidenori, Tomono, Kazunori, Kato, Kazuto, Takahashi, Meiko, Matsuda, Fumihiko, Hirata, Haruhiko, Takeda, Yoshito, Koh, Hidefumi, Manabe, Tadashi, Funatsu, Yohei, Ito, Fumimaro, Fukui, Takahiro, Shinozuka, Keisuke, Kohashi, Sumiko, Miyazaki, Masatoshi, Shoko, Tomohisa, Kojima, Mitsuaki, Adachi, Tomohiro, Ishikawa, Motonao, Takahashi, Kenichiro, Inoue, Takashi, Hirano, Toshiyuki, Kobayashi, Keigo, Takaoka, Hatsuyo, Watanabe, Kazuyoshi, Miyazawa, Naoki, Kimura, Yasuhiro, Sado, Reiko, Sugimoto, Hideyasu, Kamiya, Akane, Kuwahara, Naota, Fujiwara, Akiko, Matsunaga, Tomohiro, Sato, Yoko, Okada, Takenori, Hirai, Yoshihiro, Kawashima, Hidetoshi, Narita, Atsuya, Niwa, Kazuki, Sekikawa, Yoshiyuki, Nishi, Koichi, Nishitsuji, Masaru, Tani, Mayuko, Suzuki, Junya, Nakatsumi, Hiroki, Ogura, Takashi, Kitamura, Hideya, Hagiwara, Eri, Murohashi, Kota, Okabayashi, Hiroko, Mochimaru, Takao, Nukaga, Shigenari, Satomi, Ryosuke, Oyamada, Yoshitaka, Mori, Nobuaki, Baba, Tomoya, Fukui, Yasutaka, Odate, Mitsuru, Mashimo, Shuko, Makino, Yasushi, Yagi, Kazuma, Hashiguchi, Mizuha, Kagyo, Junko, Shiomi, Tetsuya, Fuke, Satoshi, Saito, Hiroshi, Tsuchida, Tomoya, Fujitani, Shigeki, Takita, Mumon, Morikawa, Daiki, Yoshida, Toru, Izumo, Takehiro, Inomata, Minoru, Kuse, Naoyuki, Awano, Nobuyasu, Tone, Mari, Ito, Akihiro, Nakamura, Yoshihiko, Hoshino, Kota, Maruyama, Junichi, Ishikura, Hiroyasu, Takata, Tohru, Odani, Toshio, Amishima, Masaru, Hattori, Takeshi, Shichinohe, Yasuo, Kagaya, Takashi, Kita, Toshiyuki, Ohta, Kazuhide, Sakagami, Satoru, Koshida, Kiyoshi, Hayashi, Kentaro, Shimizu, Tetsuo, Kozu, Yutaka, Hiranuma, Hisato, Gon, Yasuhiro, Izumi, Namiki, Nagata, Kaoru, Ueda, Ken, Taki, Reiko, Hanada, Satoko, Kawamura, Kodai, Ichikado, Kazuya, Nishiyama, Kenta, Muranaka, Hiroyuki, Nakamura, Kazunori, Hashimoto, Naozumi, Wakahara, Keiko, Koji, Sakamoto, Omote, Norihito, Ando, Akira, Kodama, Nobuhiro, Kaneyama, Yasunari, Shunsuke, Maeda, Kuraki, Takashige, Matsumoto, Takemasa, Yokote, Koutaro, Nakada, Taka-Aki, Abe, Ryuzo, Oshima, Taku, Shimada, Tadanaga, Harada, Masahiro, Takahashi, Takeshi, Ono, Hiroshi, Sakurai, Toshihiro, Shibusawa, Takayuki, Kimizuka, Yoshifumi, Kawana, Akihiko, Sano, Tomoya, Watanabe, Chie, Suematsu, Ryohei, Sageshima, Hisako, Yoshifuji, Ayumi, Ito, Kazuto, Takahashi, Saeko, Ishioka, Kota, Nakamura, Morio, Masuda, Makoto, Wakabayashi, Aya, Watanabe, Hiroki, Ueda, Suguru, Nishikawa, Masanori, Chihara, Yusuke, Takeuchi, Mayumi, Onoi, Keisuke, Shinozuka, Jun, Sueyoshi, Atsushi, Nagasaki, Yoji, Okamoto, Masaki, Ishihara, Sayoko, Shimo, Masatoshi, Tokunaga, Yoshihisa, Kusaka, Yu, Ohba, Takehiko, Isogai, Susumu, Ogawa, Aki, Inoue, Takuya, Fukuyama, Satoru, Eriguchi, Yoshihiro, Yonekawa, Akiko, Kan-o, Keiko, Matsumoto, Koichiro, Kanaoka, Kensuke, Ihara, Shoichi, Komuta, Kiyoshi, Inoue, Yoshiaki, Chiba, Shigeru, Yamagata, Kunihiro, Hiramatsu, Yuji, Kai, Hirayasu, Asano, Koichiro, Oguma, Tsuyoshi, Ito, Yoko, Hashimoto, Satoru, Yamasaki, Masaki, Kasamatsu, Yu, Komase, Yuko, Hida, Naoya, Tsuburai, Takahiro, Oyama, Baku, Takada, Minoru, Kanda, Hidenori, Kitagawa, Yuichiro, Fukuta, Tetsuya, Miyake, Takahito, Yoshida, Shozo, Ogura, Shinji, Abe, Shinji, Kono, Yuta, Togashi, Yuki, Takoi, Hiroyuki, Kikuchi, Ryota, Ogawa, Shinichi, Ogata, Tomouki, Ishihara, Shoichiro, Kanehiro, Arihiko, Ozaki, Shinji, Fuchimoto, Yasuko, Wada, Sae, Fujimoto, Nobukazu, Nishiyama, Kei, Terashima, Mariko, Beppu, Satoru, Yoshida, Kosuke, Narumoto, Osamu, Nagai, Hideaki, Ooshima, Nobuharu, Motegi, Mitsuru, Umeda, Akira, Miyagawa, Kazuya, Shimada, Hisato, Endo, Mayu, Ohira, Yoshiyuki, Watanabe, Masafumi, Inoue, Sumito, Igarashi, Akira, Sato, Masamichi, Sagara, Hironori, Tanaka, Akihiko, Ohta, Shin, Kimura, Tomoyuki, Shibata, Yoko, Tanino, Yoshinori, Nikaido, Takefumi, Minemura, Hiroyuki, Sato, Yuki, Yamada, Yuichiro, Hashino, Takuya, Shinoki, Masato, Iwagoe, Hajime, Takahashi, Hiroshi, Fujii, Kazuhiko, Kishi, Hiroto, Kanai, Masayuki, Imamura, Tomonori, Yamashita, Tatsuya, Yatomi, Masakiyo, Maeno, Toshitaka, Hayashi, Shinichi, Takahashi, Mai, Kuramochi, Mizuki, Kamimaki, Isamu, Tominaga, Yoshiteru, Ishii, Tomoo, Utsugi, Mitsuyoshi, Ono, Akihiro, Tanaka, Toru, Kashiwada, Takeru, Fujita, Kazue, Saito, Yoshinobu, Seike, Masahiro, Watanabe, Hiroko, Matsuse, Hiroto, Kodaka, Norio, Nakano, Chihiro, Oshio, Takeshi, Hirouchi, Takatomo, Makino, Shohei, Egi, Moritoki, Omae, Yosuke, Nannya, Yasuhito, Ueno, Takafumi, Katayama, Kazuhiko, Ai, Masumi, Fukui, Yoshinori, Kumanogoh, Atsushi, Sato, Toshiro, Hasegawa, Naoki, Tokunaga, Katsushi, Ishii, Makoto, Koike, Ryuji, Kitagawa, Yuko, Kimura, Akinori, Imoto, Seiya, Miyano, Satoru, Ogawa, Seishi, Kanai, Takanori, Fukunaga, Koichi, Takeshima, Yusuke, Tanaka, Kentaro, Koichi Matsuda, Yamanashi, Yuji, Furukawa, Yoichi, Morisaki, Takayuki, Murakami, Yoshinori, Kamatani, Yoichiro, Muto, Kaori, Nagai, Akiko, Nakamura, Yusuke, Obara, Wataru, Yamaji, Ken, Asai, Satoshi, Takahashi, Yasuo, Higashiue, Shinichi, Kobayashi, Shuzo, Yamaguchi, Hiroki, Nagata, Yasunobu, Wakita, Satoshi, Nito, Chikako, Iwasaki, Yu-ki, Murayama, Shigeo, Yoshimori, Kozo, Miki, Yoshio, Obata, Daisuke, Higashiyama, Masahiko, Masumoto, Akihide, Koga, Yoshinobu, Koretsune, Yukihiro, Yata, Tomohiro, Ogawa, Kotaro, Namkoong, Ho, Okuno, Tatsusada, Liu, Boxiang, Matsuda, Koichi, and Mochizuki, Hideki
- Published
- 2024
- Full Text
- View/download PDF
3. Distinct roles of types 1 and 2 interferons in human eosinophil regulation: A multi‐omics analysis.
- Author
-
Sasaki, Hisashi, Miyata, Jun, Kawashima, Yusuke, Konno, Ryo, Ishikawa, Masaki, Hasegawa, Yoshinori, Onozato, Ryuta, Otsu, Yo, Matsuyama, Emiko, Sunata, Keeya, Masaki, Katsunori, Kabata, Hiroki, Kimizuka, Yoshifumi, Ueki, Shigeharu, Asano, Koichiro, Kawana, Akihiko, Arita, Makoto, and Fukunaga, Koichi
- Subjects
CD54 antigen ,DNA data banks ,GENE expression ,GRANTS in aid (Public finance) ,CYTOKINE receptors ,NASAL polyps - Abstract
The article explores the distinct roles of type 1 and type 2 interferons in regulating human eosinophils through multi-omics analysis. Interferons are crucial in immune responses against infectious and malignant diseases, but their involvement in allergic diseases with eosinophilic inflammation is not fully understood. The study reveals that IFN-α and IFN-γ have different effects on eosinophils, with IFN-γ inducing the expression of pro-inflammatory molecules that may contribute to chronic eosinophilic inflammation. The research suggests that developing therapeutic strategies to selectively control type 1 and type 2 interferon signaling could be beneficial in treating refractory eosinophilic diseases. [Extracted from the article]
- Published
- 2024
- Full Text
- View/download PDF
4. Severe Atelectasis due to Aspirated Valproic Acid Tablet
- Author
-
Tanigaki, Tomomi, primary, Ogawa, Takunori, additional, Nomura, Sakika, additional, Ito, Koki, additional, Kurata, Yuhei, additional, Matsukida, Akira, additional, Ishihara, Morio, additional, Yoshino, Aihide, additional, Kawana, Akihiko, additional, and Kimizuka, Yoshifumi, additional
- Published
- 2024
- Full Text
- View/download PDF
5. Noninvasive Ambulatory Electrocardiographic Markers from Patients with COVID-19 Pneumonia: A Report of Three Cases
- Author
-
Kimata, Motohiro, primary, Hashimoto, Kenichi, additional, Harada, Naomi, additional, Kawamura, Yusuke, additional, Kimizuka, Yoshifumi, additional, Fujikura, Yuji, additional, Kaneko, Mayuko, additional, Kiriu, Nobuaki, additional, Sekine, Yasumasa, additional, Iwabuchi, Natsumi, additional, Kiyozumi, Tetsuro, additional, Kawana, Akihiko, additional, Matukuma, Susumu, additional, and Tanaka, Yuji, additional
- Published
- 2024
- Full Text
- View/download PDF
6. Massive pleural effusion in porous diaphragm syndrome due to lymphatic leakage after pelvic surgery
- Author
-
Nishimura, Masashi, primary, Ogawa, Takunori, additional, Tanigaki, Tomomi, additional, Sumi, Koji, additional, Enjoji, Yasuhiro, additional, Suyama, Yohsuke, additional, Kawana, Akihiko, additional, and Kimizuka, Yoshifumi, additional
- Published
- 2024
- Full Text
- View/download PDF
7. Noninvasive Ambulatory Electrocardiographic Markers from Patients with COVID-19 Pneumonia: A Report of Three Cases.
- Author
-
Kimata, Motohiro, Hashimoto, Kenichi, Harada, Naomi, Kawamura, Yusuke, Kimizuka, Yoshifumi, Fujikura, Yuji, Kaneko, Mayuko, Kiriu, Nobuaki, Sekine, Yasumasa, Iwabuchi, Natsumi, Kiyozumi, Tetsuro, Kawana, Akihiko, Matsukuma, Susumu, and Tanaka, Yuji
- Subjects
COVID-19 ,HEART beat ,MEDICAL practice ,CHRONIC kidney failure ,BIOMARKERS ,HEART failure ,BRUGADA syndrome - Abstract
Coronavirus disease 2019 (COVID-19) has affected medical practice. More than 7,000,000 patients died worldwide after being infected with COVID-19; however, no specific laboratory markers have yet been established to predict death related to this disease. In contrast, electrocardiographic changes due to COVID-19 include QT prolongation and ST-T changes; however, there have not been studies on the ambulatory electrocardiographic markers of COVID-19. We encountered three patients diagnosed as having COVID-19 who did not have a prior history of significant structural heart diseases. All patients had abnormalities in ambulatory echocardiogram parameters detected by high-resolution 24 h electrocardiogram monitoring: positive late potentials (LPs) and T-wave alternans (TWA), abnormal heart rate variability (HRV), and heart rate turbulence (HRT). Case 1 involved a 78-year-old woman with a history of chronic kidney disease, Case 2 involved a 76-year-old man with hypertension and diabetes, and Case 3 involved a 67-year-old man with renal cancer, lung cancer, and diabetes. None of them had a prior history of significant structural heart disease. Although no significant consistent increases in clinical markers were observed, all three patients died, mainly because of respiratory failure with mild heart failure. The LP, TWA, HRV, and HRT were positive in all three cases with no significant structural cardiac disease at the initial phase of admission. The further accumulation of data regarding ambulatory electrocardiographic markers in patients with COVID-19 is needed. Depending on the accumulation of data, the LP, TWA, HRV, and HRT could be identified as potential risk factors for COVID-19 pneumonia in the early phase of admission. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
8. Relapsing polychondritis after COVID‐19 vaccination.
- Author
-
Ito, Koki, Ogawa, Takunori, Igarashi, Shunya, Miyai, Kosuke, Sato, Kimiya, Kawana, Akihiko, and Kimizuka, Yoshifumi
- Subjects
AUTOIMMUNE diseases ,VACCINATION ,MEDICAL personnel ,MESSENGER RNA ,VACCINES - Abstract
Relapsing polychondritis (RP) is a rare inflammatory disorder involving immune‐mediated destruction of cartilaginous structures. Herein, we present the first report of a strong association between COVID‐19 vaccination and RP development. Clinicians should be aware that RP is among the autoimmune diseases that can develop after mRNA vaccination. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
9. IgG4‐related retroperitoneal fibrosis induced by nivolumab and ipilimumab in a patient with non‐small cell lung cancer: A case report.
- Author
-
Nishimura, Masashi, Kimizuka, Yoshifumi, Ogawa, Takunori, Tsuchiya, Motohiro, Kato, Yoshiki, Matsukida, Akira, Igarashi, Shunya, Ito, Koki, Serizawa, Yusuke, Tanigaki, Tomomi, Fujikura, Yuji, Katsurada, Yuka, Ogata, Sho, and Kawana, Akihiko
- Subjects
STEROID drugs ,LUNG cancer ,RETROPERITONEUM ,PROGRAMMED cell death 1 receptors ,IMMUNE checkpoint inhibitors ,BIOPSY ,FIBROSIS ,IPILIMUMAB ,AUTOIMMUNE diseases ,IMMUNOGLOBULIN G ,LYMPHOCYTES ,NIVOLUMAB ,COMPUTED tomography ,IMMUNOTHERAPY - Abstract
IgG4‐related diseases are adverse events that occur after receiving treatment with immune checkpoint inhibitors (ICI). This study reports the first case of IgG4‐related retroperitoneal fibrosis after the administration of chemotherapy with nivolumab and ipilimumab (NI therapy). An 80‐year‐old man developed lower abdominal pain eight months after NI therapy was initiated. Although the primary lesion maintained its reduced size on computed tomography, there was an increase in the soft tissue shadows intensity around the abdominal aorta, bladder, and seminal vesicles, suggesting retroperitoneal fibrosis. Blood tests showed elevated IgG4 levels. Computed tomography‐guided biopsy of the retroperitoneum showed B cell‐dominant lymphocyte infiltration consistent with IgG4‐related retroperitoneal fibrosis and characteristic CD8‐positive lymphocyte infiltration, suggestive of the involvement of cytotoxic T cells. Based on the clinical, imaging, and pathological findings, the patient was diagnosed with IgG4‐related retroperitoneal fibrosis due to ICI. Immunotherapy discontinuation alone did not result in improvement; therefore, steroid therapy was initiated. In clinical practice, IgG4‐related retroperitoneal fibrosis can occur as an immune‐related adverse event when administering anti‐PD‐1 and anti‐CTLA‐4 antibodies for cancer immunotherapy. Early steroid therapy could be effective in controlling this immune‐related adverse event. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
10. Eosinophilic pleural effusion due to Staphylococcus epidermidis infection: A case report
- Author
-
Ito, Koki, Ogawa, Takunori, Tanigaki, Tomomi, Kameda, Koji, Hashimoto, Hiroshi, Kawana, Akihiko, and Kimizuka, Yoshifumi
- Published
- 2024
- Full Text
- View/download PDF
11. Aspergillus fumigatusextract modulates human eosinophils via NOD2 and oxidative stress
- Author
-
Sasaki, Hisashi, Miyata, Jun, Kawashima, Yusuke, Konno, Ryo, Ishikawa, Masaki, Hasegawa, Yoshinori, Onozato, Ryuta, Otsu, Yo, Matsuyama, Emiko, Sunata, Keeya, Masaki, Katsunori, Kabata, Hiroki, Kimizuka, Yoshifumi, Abe, Tomoe, Ueki, Shigeharu, Asano, Koichiro, Kawana, Akihiko, and Fukunaga, Koichi
- Abstract
Aspergillus fumigatusis a pathogenic fungus known to be associated with severe asthma and allergic bronchopulmonary mycosis. However, the precise mechanisms underlying airway inflammation remain unclear. In this study, we investigated the direct modulation of human eosinophils by A. fumigatusand identified the specific mechanism of airway inflammation.
- Published
- 2024
- Full Text
- View/download PDF
12. Aspergillus fumigatus extract modulates human eosinophils via NOD2 and oxidative stress.
- Author
-
Sasaki H, Miyata J, Kawashima Y, Konno R, Ishikawa M, Hasegawa Y, Onozato R, Otsu Y, Matsuyama E, Sunata K, Masaki K, Kabata H, Kimizuka Y, Abe T, Ueki S, Asano K, Kawana A, and Fukunaga K
- Abstract
Background: Aspergillus fumigatus is a pathogenic fungus known to be associated with severe asthma and allergic bronchopulmonary mycosis. However, the precise mechanisms underlying airway inflammation remain unclear. In this study, we investigated the direct modulation of human eosinophils by A. fumigatus and identified the specific mechanism of airway inflammation., Methods: Eosinophils isolated from healthy subjects were stimulated with extracts of A. fumigatus. Multi-omics analysis, comprising transcriptomic and proteomic analyses, was performed. The expression of specific factors was evaluated using quantitative real-time polymerase chain reaction and flow cytometry. Mechanistic analyses were performed using NOD2 inhibitor and N-acetyl-l-cysteine (NAC)., Results: The A. fumigatus extract changed the expression of adhesion molecules (CD62L and CD11b) and CD69 on the surface of eosinophils, without affecting their viability, via nucleotide-binding oligomerization domain-containing protein 2 (NOD2) but not protease activity. Investigation using kinase inhibitors showed that A. fumigatus extract-induced modulation was partly mediated via p38 mitogen-activated protein kinases. Multi-omics analysis revealed that A. fumigatus-induced gene and protein expression profiles were characterized by the upregulation of oxidative stress-related molecules, including heat shock proteins (HSP90AA1, HSP90AB1, SRXN1, and HMOX1). NOD2 inhibitor and NAC differentially inhibited A. fumigatus-induced inflammatory changes. Additional multi-omics analysis identified that NOD2 signaling induced gene signatures different from those of interleukin (IL)-5 and elicited synergistic change with IL-5., Conclusions: A. fumigatus modulates human eosinophils via NOD2 and oxidative stress-mediated signaling. NOD2 signaling potentiated IL-5-induced activation, suggesting its pathogenic role in type 2 inflammation. NOD2 inhibitors and antioxidants can have therapeutic potential against A. fumigatus-related allergic disorders., (Copyright © 2024 Japanese Society of Allergology. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
13. Airway Epithelium-derived CXCL14 Promotes Eosinophil Accumulation in Allergic Airway Inflammation.
- Author
-
Ogawa T, Maki Y, Takahashi S, Ono T, Sato K, Kawana A, and Kimizuka Y
- Abstract
C-X-C motif chemokine ligand 14 (CXCL14) is expressed in the airway epithelial cells of patients with asthma. However, the mechanisms of CXCL14 secretion and its effects on asthma pathogenesis remain unclear. Here, we investigated the role of CXCL14 in allergic airway inflammation and its effects on eosinophil infiltration. Our findings showed that Alternaria alternata , a major environmental allergen, stimulated CXCL14 secretion from airway epithelial cells via reactive oxygen species (ROS) generated in mitochondrial oxidative phosphorylation (OXPHOS) complexes, especially in OXPHOS complex II. In vivo , in a mouse model of allergic airway inflammation, intranasal administration of anti-CXCL14 antibody suppressed eosinophil and dendritic cell infiltration into the airways and goblet cell hyperplasia. In vitro , in human eosinophil-like cells, CXCL14 promoted cell migration through C-X-C chemokine receptor type 4 (CXCR4) binding. Eosinophil CXCR4 expression was upregulated by Alternaria stimulation via ROS production. These findings suggest that the crosstalk between Alternaria -stimulated airway epithelial CXCL14 secretion and eosinophil CXCR4 upregulation plays an important role in eosinophil infiltration into the lungs during allergic airway inflammation. In summary, this study demonstrates that CXCL14 could be a therapeutic target for allergic airway inflammation.
- Published
- 2024
- Full Text
- View/download PDF
14. Corrigendum: 1270 nm near-infrared light as a novel vaccine adjuvant acts on mitochondrial photoreception in intradermal vaccines.
- Author
-
Maki Y, Kushibiki T, Sano T, Ogawa T, Komai E, Takahashi S, Kitagami E, Serizawa Y, Nagaoka R, Yokomizo S, Ono T, Ishihara M, Miyahira Y, Kashiwagi S, Kawana A, and Kimizuka Y
- Abstract
[This corrects the article DOI: 10.3389/fimmu.2022.1028733.]., (Copyright © 2024 Maki, Kushibiki, Sano, Ogawa, Komai, Takahashi, Kitagami, Serizawa, Nagaoka, Yokomizo, Ono, Ishihara, Miyahira, Kashiwagi, Kawana and Kimizuka.)
- Published
- 2024
- Full Text
- View/download PDF
15. Principal component analysis of clinical characteristics of pulmonary sarcoidosis with or without extrapulmonary lesions: a single-center observational study in Japan.
- Author
-
Maki Y, Miyata J, Suematsu R, Sasaki H, Kimizuka Y, Fujikura Y, and Kawana A
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.