4 results on '"Jump, Alistair S"'
Search Results
2. Identifying drivers of non-stationary climate-growth relationships of European beech
- Author
-
Leifsson, Christopher, Buras, Allan, Klesse, Stefan, Baittinger, Claudia, Bat-Enerel, Banzragch, Battipaglia, Giovanna, Biondi, Franco, Stajić, Branko, Budeanu, Marius, Čada, Vojtěch, Cavin, Liam, Claessens, Hugues, Čufar, Katarina, de Luis, Martin, Dorado-Liñán, Isabel, Dulamsuren, Choimaa, Garamszegi, Balázs, Grabner, Michael, Hacket-Pain, Andrew, Hansen, Jon Kehlet, Hartl, Claudia, Huang, Weiwei, Janda, Pavel, Jump, Alistair S., Kazimirović, Marko, Knutzen, Florian, Kreyling, Jürgen, Land, Alexander, Latte, Nicolas, Lebourgeois, François, Leuschner, Christoph, Longares, Luis A., Martinez del Castillo, Edurne, Menzel, Annette, Motta, Renzo, Muffler-Weigel, Lena, Nola, Paola, Panayatov, Momchil, Petritan, Any Mary, Petritan, Ion Catalin, Popa, Ionel, Roibu, Cǎtǎlin-Constantin, Rubio-Cuadrado, Álvaro, Rydval, Miloš, Scharnweber, Tobias, Camarero, J. Julio, Svoboda, Miroslav, Toromani, Elvin, Trotsiuk, Volodymyr, van der Maaten-Theunissen, Marieke, van der Maaten, Ernst, Weigel, Robert, Wilmking, Martin, Zlatanov, Tzvetan, Rammig, Anja, and Zang, Christian S.
- Published
- 2024
- Full Text
- View/download PDF
3. Historic Land Use Modifies Impacts of Climate and Isolation in Rear Edge European Beech (Fagus sylvatica L.) Populations.
- Author
-
Rhoades, Jazz, Vilà‐Cabrera, Albert, Ruiz‐Benito, Paloma, Bullock, James M., Jump, Alistair S., and Chapman, Daniel
- Abstract
Legacies of human land use have the potential to impact demographic responses to climate. However, few studies have investigated the interactive effects of land use legacies and climate change on tree demography. The demographic performance of rear edge populations in particular is an important determinant of a species' long‐term persistence. In this study, we investigated whether human land use legacies affect demographic responses to climate and population isolation in rear edge European beech populations (Fagus sylvatica L.) at the temperate‐Mediterranean transition zone in the NE Iberian Peninsula. We utilised data from the Spanish Forest Inventory and generalised linear mixed models to compare the potential interactions across four different demographic rates (tree growth, survival probability, new adult recruitment and sapling recruitment). We found that the demographic rates were affected by the combination of land use legacies, climate and population isolation in different ways, which could potentially lead to complex shifts in future population dynamics under climate change. We identified that intense historic management either magnified negative relationships between tree demography and climate or population isolation, or reduced demographic performance in favourable climates to levels observed in unfavourable climates. Through either form of interaction, we found that intense historic forest management had a negative impact on tree demography, which has the potential to compromise future carbon stocks and long‐term population viability. Overall, we show that disentangling human and environmental factors can enable us to better understand heterogeneous demographic performance across the rear edge of species distributions. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation.
- Author
-
Klesse S, Peters RL, Alfaro-Sánchez R, Badeau V, Baittinger C, Battipaglia G, Bert D, Biondi F, Bosela M, Budeanu M, Čada V, Camarero JJ, Cavin L, Claessens H, Cretan AM, Čufar K, de Luis M, Dorado-Liñán I, Dulamsuren C, Espelta JM, Garamszegi B, Grabner M, Gricar J, Hacket-Pain A, Hansen JK, Hartl C, Hevia A, Hobi M, Janda P, Jump AS, Kašpar J, Kazimirović M, Keren S, Kreyling J, Land A, Latte N, Lebourgeois F, Leuschner C, Lévesque M, Longares LA, Del Castillo EM, Menzel A, Merela M, Mikoláš M, Motta R, Muffler L, Neycken A, Nola P, Panayotov M, Petritan AM, Petritan IC, Popa I, Prislan P, Levanič T, Roibu CC, Rubio-Cuadrado Á, Sánchez-Salguero R, Šamonil P, Stajić B, Svoboda M, Tognetti R, Toromani E, Trotsiuk V, van der Maaten E, van der Maaten-Theunissen M, Vannoppen A, Vašíčková I, von Arx G, Wilmking M, Weigel R, Zlatanov T, Zang C, and Buras A
- Subjects
- Europe, Droughts, Water metabolism, Temperature, Forests, Fagus growth & development, Fagus physiology, Climate Change
- Abstract
With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species. Using a unique pan-European tree-ring network of 26,430 European beech (Fagus sylvatica L.) trees from 2118 sites, we applied a linear mixed-effects modeling framework to (i) explain variation in climate-dependent growth and (ii) project growth for the near future (2021-2050) across the entire distribution of beech. We modeled the spatial pattern of radial growth responses to annually varying climate as a function of mean climate conditions (mean annual temperature, mean annual climatic water balance, and continentality). Over the calibration period (1952-2011), the model yielded high regional explanatory power (R
2 = 0.38-0.72). Considering a moderate climate change scenario (CMIP6 SSP2-4.5), beech growth is projected to decrease in the future across most of its distribution range. In particular, projected growth decreases by 12%-18% (interquartile range) in northwestern Central Europe and by 11%-21% in the Mediterranean region. In contrast, climate-driven growth increases are limited to around 13% of the current occurrence, where the historical mean annual temperature was below ~6°C. More specifically, the model predicts a 3%-24% growth increase in the high-elevation clusters of the Alps and Carpathian Arc. Notably, we find little potential for future growth increases (-10 to +2%) at the poleward leading edge in southern Scandinavia. Because in this region beech growth is found to be primarily water-limited, a northward shift in its distributional range will be constrained by water availability., (© 2024 The Author(s). Global Change Biology published by John Wiley & Sons Ltd.)- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.