13 results on '"Jeong, Seung-Hyun"'
Search Results
2. Exploring gender differences in pharmacokinetics of central nervous system related medicines based on a systematic review approach
- Author
-
Lee, Seung-Min, Jang, Ji-Hun, and Jeong, Seung-Hyun
- Published
- 2024
- Full Text
- View/download PDF
3. Population pharmacokinetic modeling of levodropropizine: extended application to comparative analysis between commercial formulations and exploration of pharmacokinetic effects of diet
- Author
-
Jeong, Seung-Hyun, Jang, Ji-Hun, and Lee, Yong-Bok
- Published
- 2024
- Full Text
- View/download PDF
4. Modeling population pharmacokinetics of morniflumate in healthy Korean men: extending pharmacometrics analysis to niflumic acid, its major active metabolite
- Author
-
Jeong, Seung-Hyun, Jang, Ji-Hun, and Lee, Yong-Bok
- Published
- 2024
- Full Text
- View/download PDF
5. Human risk assessment through development and application of a physiologically based toxicokinetic model for 4-tert-octylphenol
- Author
-
Jang, Ji-Hun and Jeong, Seung-Hyun
- Published
- 2024
- Full Text
- View/download PDF
6. Development of Hsp90 inhibitor to regulate cytokine storms in excessive delayed- and acute inflammation
- Author
-
Sim, Hyun Bo, Sang Son, Jun, Gupta, Sunil K., Jeong, Seung-Hyun, Choi, Yu-Jeong, Han, Ji Yeon, Ramos, Sonny C., Kim, Hyeongyeong, Park, Dae-Han, Yoo, Ho Jin, Yoo, Young Joo, Chang, Dong-Jo, Mun, Seul-Ki, Seo, Young Ho, and Kim, Jong-Jin
- Published
- 2024
- Full Text
- View/download PDF
7. Sex differences in 4-tert-octylphenol toxicokinetics: Exploration of sex as an effective covariate through an in vivo modeling approach
- Author
-
Jeong, Seung-Hyun, Jang, Ji-Hun, Cho, Hea-Young, and Lee, Yong-Bok
- Published
- 2024
- Full Text
- View/download PDF
8. Is Gender an Important Factor in the Precision Medicine Approach to Levocetirizine?
- Author
-
Jeong, Seung-Hyun, primary, Jang, Ji-Hun, additional, and Lee, Yong-Bok, additional
- Published
- 2024
- Full Text
- View/download PDF
9. Pharmacokinetic Analysis of Levodropropizine and Its Potential Therapeutic Advantages Considering Eosinophil Levels and Clinical Indications.
- Author
-
Jang, Ji-Hun, Cho, Young-Jin, and Jeong, Seung-Hyun
- Subjects
CLINICAL indications ,EOSINOPHILS ,COUGH ,BODY surface area ,PHARMACOKINETICS ,KOREANS - Abstract
Levodropropizine is a non-narcotic, non-centrally acting antitussive that inhibits the cough reflex triggered by neuropeptides. Despite the active clinical application of levodropropizine, the exploration of its inter-individual pharmacokinetic diversity and of factors that can interpret it is lacking. The purpose of this study was to explore effective covariates associated with variation in the pharmacokinetics of levodropropizine within the population and to perform an interpretation of covariate correlations from a therapeutic perspective. The results of a levodropropizine clinical trial conducted on 40 healthy Korean men were used in this pharmacokinetic analysis, and the calculated pharmacokinetic and physiochemical parameters were screened for effective correlations between factors through heatmap and linear regression analysis. Along with basic compartmental modeling, a correlation analysis was performed between the model-estimated parameter values and the discovered effective candidate covariates for levodropropizine, and the degree of toxicity and safety during the clinical trial of levodropropizine was quantitatively monitored, targeting the hepatotoxicity screening panel. As a result, eosinophil level and body surface area (BSA) were explored as significant (p-value < 0.05) physiochemical parameters associated with the pharmacokinetic diversity of levodropropizine. Specifically, it was confirmed that as eosinophil level and BSA increased, levodropropizine plasma exposure increased and decreased, respectively. Interestingly, changes in an individual's plasma exposure to levodropropizine depending on eosinophil levels could be interpreted as a therapeutic advantage based on pharmacokinetic benefits linked to the clinical indications for levodropropizine. This study presents effective candidate covariates that can explain the inter-individual pharmacokinetic variability of levodropropizine and provides a useful perspective on the first-line choice of levodropropizine in the treatment of inflammatory respiratory diseases. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
10. Predicting the Heading Angle of Resin During Extrusion Using Semantic Segmentation Based on Edge-Region Focal Loss
- Author
-
Lee, Sang Heon, Kim, Min Young, Woo, Min Woo, Lee, Han Chang, Won, Hong-In, and Jeong, Seung Hyun
- Abstract
In this article, a method using a semantic segmentation method based on edge-region focal loss (ERFL) was proposed to estimate the heading angle of resin in a catheter-extrusion process. The approach leveraged an improved semantic segmentation facilitated by this new loss function and principal component analysis. Accurate heading angle estimation was critical and depended on the precision of segmentation, demanding robust and precise segmentation even in the presence of external disturbances. The ERFL enhanced segmentation by heavily weighting areas with ambiguous boundaries, which was particularly important in scenarios with various semantic elements in the background and foreground or near object boundaries. Image data were collected using red green blue (RGB) cameras to validate the effectiveness of this method. The method’s accuracy was affirmed by the mean intersection over union (mIoU) and mean absolute error measurements, achieving mean absolute errors of the angle and mIoU at 0.5002 and 0.8657, respectively. These results demonstrate the method’s suitability for monitoring the extrusion process. Furthermore, compared to traditional loss functions, the ERFL shows superior performance in segmenting adjacent boundary regions between the background and objects and maintains robustness in noisy environments.
- Published
- 2024
- Full Text
- View/download PDF
11. Population Pharmacokinetics of Loxoprofen and its alcoholic metabolites in healthy Korean men.
- Author
-
Jang, Ji-Hun, Kang, Ho-Suk, and Jeong, Seung-Hyun
- Subjects
- *
BODY surface area , *KOREANS , *GASTROINTESTINAL system , *INSTITUTIONAL review boards , *MUSCULOSKELETAL pain - Abstract
Background: Loxoprofen has been actively used clinically to relieve musculoskeletal pain and inflammatory symptoms. However, there are few reports on quantitative pharmacokinetic (PK) prediction tools and diversity analyzes for loxoprofen within populations.The aim of this study was to identify effective covariates associated with explaining inter-individual PK variability through a population pharmacokinetic (Pop-PK) modeling approach for loxoprofen, and to provide a starting point for establishing scientific dosing regimens.The bioequivalence PK results of loxoprofen performed on 52 healthy Korean men and the physiological and biochemical parameters derived from each individual were used as base data for the development of a Pop-PK model of loxoprofen. In order to simultaneously predict the PKs of the active form according to loxoprofen exposure, previously reported PK results of trans-alcohol loxoprofen, an active metabolite of loxoprofen, were used to expand the model.The Pop-PK profiles of loxoprofen were described in terms of the basic structure of a non-sequential two absorption with 2-disposition compartment, and for inter-individual PK variations, peripheral compartment volume of distribution could be correlated with body surface area (BSA), and central compartment clearance with creatinine clearance (CrCL) and albumin levels. As a result of the model simulation, the concentrations of loxoprofen and its alcoholic metabolites in plasma significantly decreased as CrCL and albumin levels increased and decreased, respectively. On the other hand, it was confirmed that the higher the BSA, the greater the distribution of loxoprofen to the periphery, and the minimum concentrations of loxoprofen and alcoholic metabolites in plasma in steady-state increased by approximately 1.78–2 times, while the fluctuation between maximum and minimum concentrations decreased. The results suggest that patients with large BSA, impaired renal function, and high serum albumin levels may have significantly higher plasma exposure to loxoprofen and trans-alcohol loxoprofen. It was also suggested that the potential side effects in the gastrointestinal system and various tissues and the level of exposure in plasma due to long-term application of loxoprofen in this patient group could be causally explained.This study provides a very useful starting point for a scientific precision medicine approach to loxoprofen by discovering effective covariates and establishing a quantitative model that can explain the diversity of loxoprofen PKs within the population.The clinical study protocol used in this study was thoroughly reviewed and approved by the Institutional Review Board of the Institute of Bioequivalence and Bridging Study, Chonnam National University, Gwangju, Republic of Korea. The bioequivalence study permit numbers are as follows: 041113; 10.15.2004.Objectives: Loxoprofen has been actively used clinically to relieve musculoskeletal pain and inflammatory symptoms. However, there are few reports on quantitative pharmacokinetic (PK) prediction tools and diversity analyzes for loxoprofen within populations.The aim of this study was to identify effective covariates associated with explaining inter-individual PK variability through a population pharmacokinetic (Pop-PK) modeling approach for loxoprofen, and to provide a starting point for establishing scientific dosing regimens.The bioequivalence PK results of loxoprofen performed on 52 healthy Korean men and the physiological and biochemical parameters derived from each individual were used as base data for the development of a Pop-PK model of loxoprofen. In order to simultaneously predict the PKs of the active form according to loxoprofen exposure, previously reported PK results of trans-alcohol loxoprofen, an active metabolite of loxoprofen, were used to expand the model.The Pop-PK profiles of loxoprofen were described in terms of the basic structure of a non-sequential two absorption with 2-disposition compartment, and for inter-individual PK variations, peripheral compartment volume of distribution could be correlated with body surface area (BSA), and central compartment clearance with creatinine clearance (CrCL) and albumin levels. As a result of the model simulation, the concentrations of loxoprofen and its alcoholic metabolites in plasma significantly decreased as CrCL and albumin levels increased and decreased, respectively. On the other hand, it was confirmed that the higher the BSA, the greater the distribution of loxoprofen to the periphery, and the minimum concentrations of loxoprofen and alcoholic metabolites in plasma in steady-state increased by approximately 1.78–2 times, while the fluctuation between maximum and minimum concentrations decreased. The results suggest that patients with large BSA, impaired renal function, and high serum albumin levels may have significantly higher plasma exposure to loxoprofen and trans-alcohol loxoprofen. It was also suggested that the potential side effects in the gastrointestinal system and various tissues and the level of exposure in plasma due to long-term application of loxoprofen in this patient group could be causally explained.This study provides a very useful starting point for a scientific precision medicine approach to loxoprofen by discovering effective covariates and establishing a quantitative model that can explain the diversity of loxoprofen PKs within the population.The clinical study protocol used in this study was thoroughly reviewed and approved by the Institutional Review Board of the Institute of Bioequivalence and Bridging Study, Chonnam National University, Gwangju, Republic of Korea. The bioequivalence study permit numbers are as follows: 041113; 10.15.2004.Method: Loxoprofen has been actively used clinically to relieve musculoskeletal pain and inflammatory symptoms. However, there are few reports on quantitative pharmacokinetic (PK) prediction tools and diversity analyzes for loxoprofen within populations.The aim of this study was to identify effective covariates associated with explaining inter-individual PK variability through a population pharmacokinetic (Pop-PK) modeling approach for loxoprofen, and to provide a starting point for establishing scientific dosing regimens.The bioequivalence PK results of loxoprofen performed on 52 healthy Korean men and the physiological and biochemical parameters derived from each individual were used as base data for the development of a Pop-PK model of loxoprofen. In order to simultaneously predict the PKs of the active form according to loxoprofen exposure, previously reported PK results of trans-alcohol loxoprofen, an active metabolite of loxoprofen, were used to expand the model.The Pop-PK profiles of loxoprofen were described in terms of the basic structure of a non-sequential two absorption with 2-disposition compartment, and for inter-individual PK variations, peripheral compartment volume of distribution could be correlated with body surface area (BSA), and central compartment clearance with creatinine clearance (CrCL) and albumin levels. As a result of the model simulation, the concentrations of loxoprofen and its alcoholic metabolites in plasma significantly decreased as CrCL and albumin levels increased and decreased, respectively. On the other hand, it was confirmed that the higher the BSA, the greater the distribution of loxoprofen to the periphery, and the minimum concentrations of loxoprofen and alcoholic metabolites in plasma in steady-state increased by approximately 1.78–2 times, while the fluctuation between maximum and minimum concentrations decreased. The results suggest that patients with large BSA, impaired renal function, and high serum albumin levels may have significantly higher plasma exposure to loxoprofen and trans-alcohol loxoprofen. It was also suggested that the potential side effects in the gastrointestinal system and various tissues and the level of exposure in plasma due to long-term application of loxoprofen in this patient group could be causally explained.This study provides a very useful starting point for a scientific precision medicine approach to loxoprofen by discovering effective covariates and establishing a quantitative model that can explain the diversity of loxoprofen PKs within the population.The clinical study protocol used in this study was thoroughly reviewed and approved by the Institutional Review Board of the Institute of Bioequivalence and Bridging Study, Chonnam National University, Gwangju, Republic of Korea. The bioequivalence study permit numbers are as follows: 041113; 10.15.2004.Results: Loxoprofen has been actively used clinically to relieve musculoskeletal pain and inflammatory symptoms. However, there are few reports on quantitative pharmacokinetic (PK) prediction tools and diversity analyzes for loxoprofen within populations.The aim of this study was to identify effective covariates associated with explaining inter-individual PK variability through a population pharmacokinetic (Pop-PK) modeling approach for loxoprofen, and to provide a starting point for establishing scientific dosing regimens.The bioequivalence PK results of loxoprofen performed on 52 healthy Korean men and the physiological and biochemical parameters derived from each individual were used as base data for the development of a Pop-PK model of loxoprofen. In order to simultaneously predict the PKs of the active form according to loxoprofen exposure, previously reported PK results of trans-alcohol loxoprofen, an active metabolite of loxoprofen, were used to expand the model.The Pop-PK profiles of loxoprofen were described in terms of the basic structure of a non-sequential two absorption with 2-disposition compartment, and for inter-individual PK variations, peripheral compartment volume of distribution could be correlated with body surface area (BSA), and central compartment clearance with creatinine clearance (CrCL) and albumin levels. As a result of the model simulation, the concentrations of loxoprofen and its alcoholic metabolites in plasma significantly decreased as CrCL and albumin levels increased and decreased, respectively. On the other hand, it was confirmed that the higher the BSA, the greater the distribution of loxoprofen to the periphery, and the minimum concentrations of loxoprofen and alcoholic metabolites in plasma in steady-state increased by approximately 1.78–2 times, while the fluctuation between maximum and minimum concentrations decreased. The results suggest that patients with large BSA, impaired renal function, and high serum albumin levels may have significantly higher plasma exposure to loxoprofen and trans-alcohol loxoprofen. It was also suggested that the potential side effects in the gastrointestinal system and various tissues and the level of exposure in plasma due to long-term application of loxoprofen in this patient group could be causally explained.This study provides a very useful starting point for a scientific precision medicine approach to loxoprofen by discovering effective covariates and establishing a quantitative model that can explain the diversity of loxoprofen PKs within the population.The clinical study protocol used in this study was thoroughly reviewed and approved by the Institutional Review Board of the Institute of Bioequivalence and Bridging Study, Chonnam National University, Gwangju, Republic of Korea. The bioequivalence study permit numbers are as follows: 041113; 10.15.2004.Conclusion: Loxoprofen has been actively used clinically to relieve musculoskeletal pain and inflammatory symptoms. However, there are few reports on quantitative pharmacokinetic (PK) prediction tools and diversity analyzes for loxoprofen within populations.The aim of this study was to identify effective covariates associated with explaining inter-individual PK variability through a population pharmacokinetic (Pop-PK) modeling approach for loxoprofen, and to provide a starting point for establishing scientific dosing regimens.The bioequivalence PK results of loxoprofen performed on 52 healthy Korean men and the physiological and biochemical parameters derived from each individual were used as base data for the development of a Pop-PK model of loxoprofen. In order to simultaneously predict the PKs of the active form according to loxoprofen exposure, previously reported PK results of trans-alcohol loxoprofen, an active metabolite of loxoprofen, were used to expand the model.The Pop-PK profiles of loxoprofen were described in terms of the basic structure of a non-sequential two absorption with 2-disposition compartment, and for inter-individual PK variations, peripheral compartment volume of distribution could be correlated with body surface area (BSA), and central compartment clearance with creatinine clearance (CrCL) and albumin levels. As a result of the model simulation, the concentrations of loxoprofen and its alcoholic metabolites in plasma significantly decreased as CrCL and albumin levels increased and decreased, respectively. On the other hand, it was confirmed that the higher the BSA, the greater the distribution of loxoprofen to the periphery, and the minimum concentrations of loxoprofen and alcoholic metabolites in plasma in steady-state increased by approximately 1.78–2 times, while the fluctuation between maximum and minimum concentrations decreased. The results suggest that patients with large BSA, impaired renal function, and high serum albumin levels may have significantly higher plasma exposure to loxoprofen and trans-alcohol loxoprofen. It was also suggested that the potential side effects in the gastrointestinal system and various tissues and the level of exposure in plasma due to long-term application of loxoprofen in this patient group could be causally explained.This study provides a very useful starting point for a scientific precision medicine approach to loxoprofen by discovering effective covariates and establishing a quantitative model that can explain the diversity of loxoprofen PKs within the population.The clinical study protocol used in this study was thoroughly reviewed and approved by the Institutional Review Board of the Institute of Bioequivalence and Bridging Study, Chonnam National University, Gwangju, Republic of Korea. The bioequivalence study permit numbers are as follows: 041113; 10.15.2004.Clinical trial registration: Loxoprofen has been actively used clinically to relieve musculoskeletal pain and inflammatory symptoms. However, there are few reports on quantitative pharmacokinetic (PK) prediction tools and diversity analyzes for loxoprofen within populations.The aim of this study was to identify effective covariates associated with explaining inter-individual PK variability through a population pharmacokinetic (Pop-PK) modeling approach for loxoprofen, and to provide a starting point for establishing scientific dosing regimens.The bioequivalence PK results of loxoprofen performed on 52 healthy Korean men and the physiological and biochemical parameters derived from each individual were used as base data for the development of a Pop-PK model of loxoprofen. In order to simultaneously predict the PKs of the active form according to loxoprofen exposure, previously reported PK results of trans-alcohol loxoprofen, an active metabolite of loxoprofen, were used to expand the model.The Pop-PK profiles of loxoprofen were described in terms of the basic structure of a non-sequential two absorption with 2-disposition compartment, and for inter-individual PK variations, peripheral compartment volume of distribution could be correlated with body surface area (BSA), and central compartment clearance with creatinine clearance (CrCL) and albumin levels. As a result of the model simulation, the concentrations of loxoprofen and its alcoholic metabolites in plasma significantly decreased as CrCL and albumin levels increased and decreased, respectively. On the other hand, it was confirmed that the higher the BSA, the greater the distribution of loxoprofen to the periphery, and the minimum concentrations of loxoprofen and alcoholic metabolites in plasma in steady-state increased by approximately 1.78–2 times, while the fluctuation between maximum and minimum concentrations decreased. The results suggest that patients with large BSA, impaired renal function, and high serum albumin levels may have significantly higher plasma exposure to loxoprofen and trans-alcohol loxoprofen. It was also suggested that the potential side effects in the gastrointestinal system and various tissues and the level of exposure in plasma due to long-term application of loxoprofen in this patient group could be causally explained.This study provides a very useful starting point for a scientific precision medicine approach to loxoprofen by discovering effective covariates and establishing a quantitative model that can explain the diversity of loxoprofen PKs within the population.The clinical study protocol used in this study was thoroughly reviewed and approved by the Institutional Review Board of the Institute of Bioequivalence and Bridging Study, Chonnam National University, Gwangju, Republic of Korea. The bioequivalence study permit numbers are as follows: 041113; 10.15.2004.Graphical abstract: Loxoprofen has been actively used clinically to relieve musculoskeletal pain and inflammatory symptoms. However, there are few reports on quantitative pharmacokinetic (PK) prediction tools and diversity analyzes for loxoprofen within populations.The aim of this study was to identify effective covariates associated with explaining inter-individual PK variability through a population pharmacokinetic (Pop-PK) modeling approach for loxoprofen, and to provide a starting point for establishing scientific dosing regimens.The bioequivalence PK results of loxoprofen performed on 52 healthy Korean men and the physiological and biochemical parameters derived from each individual were used as base data for the development of a Pop-PK model of loxoprofen. In order to simultaneously predict the PKs of the active form according to loxoprofen exposure, previously reported PK results of trans-alcohol loxoprofen, an active metabolite of loxoprofen, were used to expand the model.The Pop-PK profiles of loxoprofen were described in terms of the basic structure of a non-sequential two absorption with 2-disposition compartment, and for inter-individual PK variations, peripheral compartment volume of distribution could be correlated with body surface area (BSA), and central compartment clearance with creatinine clearance (CrCL) and albumin levels. As a result of the model simulation, the concentrations of loxoprofen and its alcoholic metabolites in plasma significantly decreased as CrCL and albumin levels increased and decreased, respectively. On the other hand, it was confirmed that the higher the BSA, the greater the distribution of loxoprofen to the periphery, and the minimum concentrations of loxoprofen and alcoholic metabolites in plasma in steady-state increased by approximately 1.78–2 times, while the fluctuation between maximum and minimum concentrations decreased. The results suggest that patients with large BSA, impaired renal function, and high serum albumin levels may have significantly higher plasma exposure to loxoprofen and trans-alcohol loxoprofen. It was also suggested that the potential side effects in the gastrointestinal system and various tissues and the level of exposure in plasma due to long-term application of loxoprofen in this patient group could be causally explained.This study provides a very useful starting point for a scientific precision medicine approach to loxoprofen by discovering effective covariates and establishing a quantitative model that can explain the diversity of loxoprofen PKs within the population.The clinical study protocol used in this study was thoroughly reviewed and approved by the Institutional Review Board of the Institute of Bioequivalence and Bridging Study, Chonnam National University, Gwangju, Republic of Korea. The bioequivalence study permit numbers are as follows: 041113; 10.15.2004. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
12. Population pharmacokinetic modeling study and discovery of covariates for the antidepressant sertraline, a serotonin selective reuptake inhibitor.
- Author
-
Jang JH and Jeong SH
- Abstract
The purpose of this study was to discover effective covariates related to explanation of inter-individual pharmacokinetic (PK) variations through population pharmacokinetic (Pop-PK) modeling for sertraline and to provide insight into establishing scientific regimen. The bioequivalence results of sertraline performed on 24 healthy Korean men and the physiological and biochemical parameters derived from each individual were used as data to develop a Pop-PK model of sertraline for Koreans. And the relevant effectiveness of ∗10 allele polymorphisms of CYP2D6 in sertraline PK polymorphisms was further confirmed through a modeling approach. The Pop-PK profiles of sertraline were explained by the basic structure of sequential 2-absorption with 1-compartment, and in terms of inter-individual PK diversity, the volume of distribution could be significantly correlated with estimated glomerular filtration rate (eGFR) and clearance with total protein levels. CYP2D6∗10 allele was not significant in interpreting sertraline PK diversity. As a result of model simulation, the concentration of sertraline in serum significantly increased as total protein and eGFR levels became higher and lower, respectively. The mean serum concentrations of sertraline at steady-state differed by up to 2.12 times from 10.36 to 22.02 ng/mL depending on changes in total protein and eGFR levels, and the fluctuations between the maximum and minimum concentration values ranged from 2.02 to 29.51 to 4.31-63.78 ng/mL. The factor that significantly influenced change in mean serum concentration of sertraline at steady-state was the total protein level, which was interpreted to be closely related to the change in clearance due to the high serum protein binding of sertraline., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
13. Structure-Based Analysis of Cefaclor Pharmacokinetic Diversity According to Human Peptide Transporter-1 Genetic Polymorphism.
- Author
-
Jang JH and Jeong SH
- Subjects
- Humans, Exons genetics, Genotype, Polymorphism, Genetic, Anti-Bacterial Agents pharmacokinetics, Polymorphism, Single Nucleotide, Models, Molecular, Peptide Transporter 1 genetics, Peptide Transporter 1 metabolism, Cefaclor pharmacokinetics
- Abstract
Cefaclor is a substrate of human-peptide-transporter-1 (PEPT1), and the impact of inter-individual pharmacokinetic variation due to genetic polymorphisms of solute-carrier-family-15-member-1 ( SLC15A1 ) has been a topic of great debate. The main objective of this study was to analyze and interpret cefaclor pharmacokinetic variations according to genetic polymorphisms in SLC15A1 exons 5 and 16. The previous cefaclor bioequivalence results were integrated with additional SLC15A1 exons 5 and 16 genotyping results. An analysis of the structure-based functional impact of SLC15A1 exons 5 and 16 genetic polymorphisms was recently performed using a PEPT1 molecular modeling approach. In cefaclor pharmacokinetic analysis results according to SLC15A1 exons 5 and 16 genetic polymorphisms, no significant differences were identified between genotype groups. Furthermore, in the population pharmacokinetic modeling, genetic polymorphisms in SLC15A1 exons 5 and 16 were not established as effective covariates. PEPT1 molecular modeling results also confirmed that SLC15A1 exons 5 and 16 genetic polymorphisms did not have a significant effect on substrate interaction with cefaclor and did not have a major effect in terms of structural stability. This was determined by comprehensively considering the insignificant change in energy values related to cefaclor docking due to point mutations in SLC15A1 exons 5 and 16, the structural change in conformations confirmed to be less than 0.05 Å, and the relative stabilization of molecular dynamic simulation energy values. As a result, molecular structure-based analysis recently suggested that SLC15A1 exons 5 and 16 genetic polymorphisms of PEPT1 were limited to being the main focus in interpreting the pharmacokinetic diversity of cefaclor.
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.