1. Systemic intracellular analysis for balancing complex biosynthesis in a transcriptionally deregulated Escherichia coli l-Methionine producer.
- Author
-
Harting C, Teleki A, Braakmann M, Jankowitsch F, and Takors R
- Subjects
- Methionine metabolism, Racemethionine, Fermentation, Escherichia coli genetics, Escherichia coli metabolism, Escherichia coli Proteins genetics, Escherichia coli Proteins metabolism
- Abstract
l-Methionine (l-Met) has gained remarkable interest due to its multifaceted and versatile applications in the fields of nutrition, pharmaceuticals and clinical practice. In this study, the fluxes of the challenging l-Met biosynthesis in the producer strain Escherichia coli (E. coli) DM2853 were fine-tuned to enable improved l-Met production. The potential bottlenecks identified in sulfur assimilation and l-Met synthesis downstream of O-succinyl-l-homoserine (OSHS) were addressed by overexpressing glutaredoxin 1 (grxA), thiosulfate sulfurtransferase (pspE) and O-succinylhomoserine lyase (metB). Although deemed as a straightforward target for improving glucose-to-Met conversion, the yields remained at approximately 12%-13% (g/g). Instead, intracellular l-Met pools increased by up to four-fold with accelerated kinetics. Overexpression of the Met exporter ygaZH may serve as a proper valve for releasing the rising internal Met pressure. Interestingly, the export kinetics revealed maximum saturated export rates already at low growth rates. This scenario is particularly advantageous for large-scale fermentation when product formation is ideally uncoupled from biomass formation to achieve maximum performance within the technical limits of large-scale bioreactors., (© 2024 The Authors. Microbial Biotechnology published by Applied Microbiology International and John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF