4 results on '"HIF-2α"'
Search Results
2. Sustained Release of HIF-2α Inhibitors Using Biodegradable Porous Silicon Carriers for Enhanced Immunogenic Cell Death of Malignant Merkel Cell Carcinoma.
- Author
-
Seong J, Kim M, Yoo J, Mack DL, Lee JH, and Joo J
- Abstract
Merkel cell carcinoma (MCC) is a rare but aggressive neuroendocrine skin cancer with limited treatment options, often associated with Merkel cell polyomavirus (MCPyV) and marked by hypoxic tumor microenvironments that promote resistance to therapies. Belzutifan, an FDA-approved hypoxia-inducible factor-2α (HIF-2α) inhibitor, has shown promise in inhibiting tumor growth; however, its clinical efficacy is hindered by its low solubility, rapid clearance, and limited bioavailability. In this study, we present a strategy using porous silicon (pSi) microparticles and nanoparticles as carriers for the sustained delivery of benzoate to MCC cells. The pSi carriers were engineered to securely encapsulate and gradually release belzutifan, overcoming the limitations of free drug administration. Microparticles provided sustained extracellular release, while nanoparticles enabled efficient intracellular delivery, enhancing HIF-2α inhibition. Moreover, the use of biodegradable silicon particles enables long-term consistent release of belzutifan over 10 days in vitro with a single dose administration in the tumor microenvironment, while free belzutifan is rapidly deactivated within 1 day postadministration. In vitro studies demonstrated significant immunogenic cell death (ICD) in MCC cells, marked by the cytosolic localization of HMGB1 and elevated expression of pro-inflammatory cytokines as well as strong upregulation of TLR9. Particularly, the increased TLR9 expression in both MCC cell lines with pSi carrier treatment reinforces immune activation through toll-like receptor signaling, enhancing both innate and adaptive immune responses within the tumor microenvironment. These findings indicate that pSi carriers not only enhance belzutifan's stability and release profile but also amplify antitumor immune responses within the tumor microenvironment. Our results suggest that belzutifan-loaded pSi carriers offer a potent and targeted therapeutic strategy for MCC, potentially addressing key challenges in cancer immunotherapy by combining HIF-2α inhibition with robust immune activation. This platform highlights the universal utility of pSi-based delivery systems to advance MCC treatment with implications for broader cancer therapies.
- Published
- 2025
- Full Text
- View/download PDF
3. Head and Neck Paraganglioma in Pacak-Zhuang Syndrome.
- Author
-
Rosenblum JS, Cole Y, Dang D, Lookian PP, Alkaissi H, Patel M, Cappadona AJ, Jha A, Edwards N, Donahue DR, Munasinghe J, Wang H, Knutsen RH, Pappo AS, Lechan RM, Kozel BA, Smirniotopoulos JG, Kim HJ, Vortmeyer A, Miettinen M, Heiss JD, Zhuang Z, and Pacak K
- Abstract
Head and neck paragangliomas (HNPGLs) are typically slow-growing, hormonally inactive tumors of parasympathetic paraganglia. Inactivation of prolyl-hydroxylase domain-containing 2 protein causing indirect gain-of-function of hypoxia-inducible factor-2α (HIF-2α), encoded by EPAS1, was recently shown to cause carotid body hyperplasia. We previously described a syndrome with multiple sympathetic paragangliomas caused by direct gain-of-function variants in EPAS1 (Pacak-Zhuang syndrome, PZS) and developed a corresponding mouse model. We evaluated a cohort of patients with PZS (n = 9) for HNPGL by positron emission tomography, magnetic resonance imaging, and computed tomography and measured carotid body size compared to literature reference values. Three patients had imaging consistent with HNPGL, one of which warranted resection and was confirmed on histology. Three additional patients had carotid body enlargement (Z-score > 2.0), and three had carotid artery malformations. Using high resolution ex vivo imaging and histology, we found that nine of ten adult mutant mice had carotid body tumors and six of eight had a paraganglioma on the cranio-caval vein, the murine homologue of the superior vena cava; these were also found in four of five mutant mice at post-natal day 8. These tumors and the one resected from a patient were positive for tyrosine hydroxylase, synaptophysin, and chromogranin A. Brown fat in a resected patient tumor carried the EPAS1 pathogenic variant. These findings 1) suggest HNPGL as a feature of PZS and 2) show that these pathogenic variants are sufficient to cause the development of these tumors, which we believe represents a continuous spectrum of disease starting from hyperplasia., (Published by Oxford University Press 2025.)
- Published
- 2025
- Full Text
- View/download PDF
4. HIF-2α/LPCAT1 orchestrates the reprogramming of lipid metabolism in ccRCC by modulating the FBXW7-mediated ubiquitination of ACLY.
- Author
-
Fei M, Zhang Y, Li H, Xu Q, Gao Y, Yang C, Li W, Liang C, Wang B, and Xiao H
- Subjects
- Humans, ATP Citrate (pro-S)-Lyase metabolism, ATP Citrate (pro-S)-Lyase genetics, Cell Line, Tumor, Kidney Neoplasms metabolism, Kidney Neoplasms genetics, Signal Transduction, Lipid Metabolism genetics, F-Box-WD Repeat-Containing Protein 7 metabolism, F-Box-WD Repeat-Containing Protein 7 genetics, Ubiquitination, Basic Helix-Loop-Helix Transcription Factors metabolism, Basic Helix-Loop-Helix Transcription Factors genetics, Carcinoma, Renal Cell metabolism, Carcinoma, Renal Cell genetics
- Abstract
The current research revealed a strong link between lipid reprogramming and dysregulated lipid metabolism to the genesis and development of clear cell renal cell carcinoma (ccRCC). Pathologically, ccRCC exhibits a high concentration of lipid droplets within the cytoplasm. HIF-2α expression has previously been demonstrated to be elevated in ccRCC caused by mutations in the von Hippel-Lindau (VHL) gene, which plays a vital role in the development of renal cell carcinoma. Nevertheless, the mechanisms by which HIF-2α influences lipid metabolism reprogramming are unknown. Our investigation demonstrated that HIF-2α directly binds to the promoter region of LPCAT1, promoting its transcription. RNA-seq and lipidomics mass spectrometry studies showed that knocking down LPCAT1 significantly reduced triglyceride production. Research suggests that KD-LPCAT1 involves activation of the NF-κB signaling pathway, which activates F-Box/WD Repeat-Containing Protein 7 (FBXW7). FBXW7, an E3 ubiquitin ligase involved in lipid metabolism, interacts with ATP Citrate Lyase (ACLY) to promote its degradation, lowering fatty acid production and contributing to the lipid content reduction., Competing Interests: Competing Interests: The authors have declared that no competing interest exists., (© The author(s).)
- Published
- 2025
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.