1. Mild (34 °C) versus moderate hypothermia (24 °C) in a swine model of extracorporeal cardiopulmonary resuscitation.
- Author
-
Marquez AM, Kosmopoulos M, Kalra R, Goslar T, Jaeger D, Gaisendrees C, Gutierrez A, Carlisle G, Alexy T, Gurevich S, Elliott AM, Steiner ME, Bartos JA, Seelig D, and Yannopoulos D
- Abstract
Background: The role of hypothermia in post-arrest neuroprotection is controversial. Animal studies suggest potential benefits with lower temperatures, but high-fidelity ECPR models evaluating temperatures below 30 °C are lacking., Objectives: To determine whether rapid cooling to 24 °C initiated upon reperfusion reduces brain injury compared to 34 °C in a swine model of ECPR., Methods: Twenty-four female pigs had electrically induced VF and mechanical CPR for 30 min. Animals were cannulated for VA-ECMO and cooled to either 34 °C for 4 h (n = 8), 24 °C for 1 h with rewarming to 34 °C over 3 h (n = 7), or 24 °C for 4 h without rewarming (n = 9). Cooling was initiated upon VA-ECMO reperfusion by circulating ice water through the oxygenator. Brain temperature and cerebral and systemic hemodynamics were continuously monitored. After four hours on VA-ECMO, brain tissue was obtained for examination., Results: Target brain temperature was achieved within 30 min of reperfusion (p = 0.74). Carotid blood flow was higher in the 24 °C without rewarming group throughout the VA-ECMO period compared to 34 °C and 24 °C with rewarming (p < 0.001). Vasopressin requirement was higher in animals treated with 24 °C without rewarming (p = 0.07). Compared to 34 °C, animals treated with 24 °C with rewarming were less coagulopathic and had less immunohistochemistry-detected neurologic injury. There were no differences in global brain injury score., Conclusions: Despite improvement in carotid blood flow and immunohistochemistry detected neurologic injury, reperfusion at 24 °C with or without rewarming did not reduce early global brain injury compared to 34 °C in a swine model of ECPR., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2024 The Authors.)
- Published
- 2024
- Full Text
- View/download PDF