1. Investigating resting-state functional connectivity changes within procedural memory network across neuropsychiatric disorders using fMRI.
- Author
-
Mohammadkhanloo, Mahdi, Pooyan, Mohammad, Sharini, Hamid, and Yousefpour, Mitra
- Subjects
LONG-term memory ,FUNCTIONAL magnetic resonance imaging ,SUBTHALAMIC nucleus ,ATTENTION-deficit hyperactivity disorder ,COGNITIVE psychology - Abstract
Background: Cognitive networks impairments are common in neuropsychiatric disorders like Attention Deficit Hyperactivity Disorder (ADHD), bipolar disorder (BD), and schizophrenia (SZ). While previous research has focused on specific brain regions, the role of the procedural memory as a type of long-term memory to examine cognitive networks impairments in these disorders remains unclear. This study investigates alterations in resting-state functional connectivity (rs-FC) within the procedural memory network to explore brain function associated with cognitive networks in patients with these disorders. Methods: This study analyzed resting-state functional magnetic resonance imaging (rs-fMRI) data from 40 individuals with ADHD, 49 with BD, 50 with SZ, and 50 healthy controls (HCs). A procedural memory network was defined based on the selection of 34 regions of interest (ROIs) associated with the network in the Harvard-Oxford Cortical Structural Atlas (default atlas). Multivariate region of interest to region of interest connectivity (mRRC) was used to analyze the rs-FC between the defined network regions. Significant differences in rs-FC between patients and HCs were identified (P < 0.001). Results: ADHD patients showed increased Cereb45 l - Cereb3 r rs-FC (p = 0.000067) and decreased Cereb1 l - Cereb6 l rs-FC (p = 0.00092). BD patients exhibited increased rs-FC between multiple regions, including Claustrum r - Caudate r (p = 0.00058), subthalamic nucleus r - Pallidum l (p = 0.00060), substantia nigra l - Cereb2 l (p = 0.00082), Cereb10 r - SMA r (p = 0.00086), and Cereb9 r - SMA l (p = 0.00093) as well as decreased rs-FC in subthalamic nucleus r - Cereb6 l (p = 0.00013) and Cereb9 r - Cereb9 l (p = 0.00033). SZ patients indicated increased Caudate r– putamen l rs-FC (p = 0.00057) and decreased rs-FC in subthalamic nucleus r – Cereb6 l (p = 0.000063), and Cereb1 r – subthalamic nucleus r (p = 0.00063). Conclusions: This study found significant alterations in rs-FC within the procedural memory network in patients with ADHD, BD, and SZ compared to HCs. These findings suggest that disrupted rs-FC within this network may related to cognitive networks impairments observed in these disorders. Clinical trial number: Not applicable. [ABSTRACT FROM AUTHOR]
- Published
- 2025
- Full Text
- View/download PDF